www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Ziehen (Beachten Reihenfolge)
Ziehen (Beachten Reihenfolge) < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ziehen (Beachten Reihenfolge): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:23 Di 20.02.2007
Autor: Sarah288

Aufgabe
Ein Glücksrad ist in zehn gleich große Felder mit den Zahlen 1 bis 10 aufgeteilt. Es wird sechsmal nacheinander gedreht. Mit welcher Wahrscheinlichkeit
a) sind die ersten vier Zahlen gerade
b) sind drei hintereinander auftretende Zahlen gerade

Hallo zusammen,
ich habe ein Problem mit der obigen Aufgabe. Ich weiß nicht genau, wie ich die Anzahl der möglichen Pfade ausrechnen kann. Im Buch steht zwar eine Formel, aber stupides Auswendiglernen bringt mir ja nichts...

Die Formel lautet:
n*(n-1)*...*(n-k+1)

Außerdem, wenn ich die Werte in die Aufgabe einsetzte bekomme ich SEHR hohe Zahlen raus.

Vielleicht kann mir jemand die Formel erklären, sodass ich sie auf ähnliche Aufgaben anwenden kann.
Vielen Dank und liebe Grüße

        
Bezug
Ziehen (Beachten Reihenfolge): Bernoulli
Status: (Antwort) fertig Status 
Datum: 19:25 Di 20.02.2007
Autor: clwoe

Hi,

es handelt sich hierbei um eine binomial verteilte Zufallsgröße. Du hast die Möglichkeit eine gerade Zahl zu drehen, oder eine ungerade. Die Wahrscheinlichkeit für eine gerade Zahl ist 0,5. Die Wahrscheinlichkeit für eine gerade Zahl ist ebenfalls 0,5, da es unter den zehn Zahlen ja fünf gerade aber auch fünf ungerade Zahlen gibt. Somit ist die Wahrscheinlichkeit für jedes Ereignis gleich groß. Somit hast du eine Bernoullikette.

Du berechnest also die Wahrscheinlichkeit einer binomail verteilten Zufallsgröße mit der Formel für die Bernoullikette.

[mm] \vektor{n \\ k}p^{k}q^{n-k} [/mm]

n ist die Anzahl deiner Versuche, k die Anzahl der Treffer, p die Trefferwahrscheinlichkeit und q die Gegenwahrscheinlichkeit.
Den Binomialkoeffizienten musst du hier allerdings weglassen, da du hier die Wahrscheinlichkeit für ein bestimmtes Ereignis haben möchtest und nicht die Wahrscheinlichkeit dafür das einfach nur 4 Treffer gelandet werden.

In Aufgabe a) hast du also 4 Treffer und 2 Nieten, mit einer Trefferwahrscheinlichkeit von 0,5 und mit einer Gegenwahrscheinlichkeit auch von 0,5. Deshalb vereinfacht sich deine Rechnung nochmals.

in Aufgabe b) hast du nur 3 Treffer und soz. 3 Nieten. Die Trefferwahrscheinlichkeit bleibt natürlich die gleiche. Nur musst du jetzt noch die Formel mal 4 nehmen, da du vier Möglichkeiten hast, dreimal hintereinander eine gerade Zahl zu drehen und du das noch mit einrechnen musst.

Ich denke mal so wirds gemacht, aber eine absolute Garantie gebe ich dir nicht. Nur so würde ich es halt rechnen.
Wenn noch jemand hier ist der davon mehr Ahnung hat wie ich, sollte dazu vielleicht auch nochmal was schreiben, oder zumindest sagen, wenn meine Lösung falsch sein sollte.

Gruß,
clwoe




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]