www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Operations Research" - Zerlegungssatz für Polyeder
Zerlegungssatz für Polyeder < Operations Research < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zerlegungssatz für Polyeder: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:42 Di 20.11.2007
Autor: Jacek

Hallo,
ich habe dieses in OR gepostet, denke aber auch Lineare Algebra wäre korrekt.
Nach dem 'Zerlegungssatz für Polyeder' gilt:
"Jedes Polyeder P besitzt eine Zerlegung P = Q + (K [mm] \oplus [/mm] L) , wobei Q ein Polytop, K
ein spitzer Kegel und L der Linienraum von P ist."

Gut, ich habe eine Aufgabe zu lösen & habe damit meine Probleme.
Ich habe Matrix

A= [mm] \pmat{ 1 & -1 & 2 \\ 2 & -1 & 5 \\ -1 & 3 & 0 \\ 0 & 1 & 1 } [/mm] und b= [mm] \vektor{11 \\ 0 \\ 11 \\ 0} [/mm]

Ich soll eine explizite Zerlegung des Polyeders P = P(A,b) als (Q + K) [mm] \oplus [/mm] L angeben.
So, als Linienraum habe ich ausgerechnet: [mm] \vektor{3 \\ 1 \\ -1} [/mm] , aber wie erhalte ich Q, das Polytop & K den spitzen Kegel?
Ich hoffe jemanden zu finden, der mir helfen kann.

        
Bezug
Zerlegungssatz für Polyeder: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:49 Do 22.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]