www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Zerlegungen
Zerlegungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zerlegungen: Vorgehensweise
Status: (Frage) beantwortet Status 
Datum: 16:35 Fr 22.07.2005
Autor: Chlors

Hallo,
ich habe ein Problem mit Zerlegungen : Polarzerlegung, Iwasawa-Zerlegung.
und zwar: wenn ich eine Matrix oder eine Abbildung gegeben habe, wie gehe ich dann vor, um die Zerlegung zu finden ?
Liebe Grüße, Conny.

        
Bezug
Zerlegungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:10 Fr 22.07.2005
Autor: taura

Hallo Conny!

Hier mal ein "Rezept" für beide Zerlegungen:

Polarzerlegung:

Gegeben Martix a, gesucht n nicht negativ und b orthogonal, so dass gilt a=bn. (Existenz gilt nach VL)

Dann weißt du, dass [mm] a^t*a=(bn)^t*(bn)=n^t*b^t*b*n=n^t*(b^tb)*n=n^tn=n^2[/mm]
Die vierte Gleichheit folgt aus der Orthogonalität von b und die fünfte aus der Symmetrie von n (denn Positivität, Negativität usw. sind nur für symmetrische bzw. hermitesche Matrizen definiert).
Also berechnest du [mm]a^ta[/mm] und davon dann die Quadratwurzel (ist per Definiton nicht negativ), damit hast du n gefunden. Das invertierst du und multiplizierst [mm]n^{-1}[/mm] von rechts an a dran und erhälst so b. (Am besten zur Probe nochmal überprüfen, dass es auch wirklich orthogonal ist, dann ist die Wahrscheinlichkeit dass du dich verrechnet hast recht gering ;-))

Iwasawa-Zerlegung:

Gegeben Matrix a, gesucht b orthogonal, t obere Dreiecksmatrix mit positiven Diagonaleinträgen, so dass gilt a=tb. (Existenz wieder nach VL)

Hier nimmst du die Zeilenvektoren von a und orthonormierst sie mit dem Gram-Schmidt-Verfahren. Die daraus hervorgehenden Vektoren sind die Zeilen von b (b ist dann orthogonal, weil die Zeilen von b eine ONB bilden, Satz aus der VL). Dann noch b invertieren und [mm]b^{-1}[/mm] von rechts an a multiplizieren, dann erhälst du t.

Ich hoffe, das hilft dir weiter, wenn was unklar ist, frag nochmal nach ok?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]