www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Zentraler Grenzwertsatz
Zentraler Grenzwertsatz < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zentraler Grenzwertsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:48 Do 13.01.2011
Autor: janisE

Aufgabe
Die Wahrscheinlichkeit eines Ereignisses A sei gleich p. Es werden n unabh. Versuche durchgeführt. X/n sei die relative Häufigkeit von A in dieser Versuchsreihe. Beantworten Sie folgenden Fragen mit der durch den ZGWS gegebenen Approximation der Binomialverteilung

a)
Sei p = 0.3 und n = 1800. Wie groß ist P (0.29 <= X/n <= 0.33)?
b)
Sei p = 0.375. Wie groß muss n sein, damit P (|X/n − p| <= 0.001) >= 0.995 ist?
c)
Sei p = 3/5 und n = 1400. Wie groß muss e gewählt werden, damit P (|X/n−p| < e) >= 0.99 ist?
d)
Sei nun n = 7600. F+r welche Werte von p wird P(|X/n|<0.01)>=0.95?


Hallo!

Irgendwie komme ich mit der Aufgabe nicht klar. Zum Verständnis: Der Zentrale Grenzwertsatz besagt soweit ich es verstanden habe, dass die Summe unabhängiger Zufallsvariablen näherungsweise normalverteilt ist. Richtig?

Doch wie rechne ich mit dieser Information die Aufgaben? Könnt ihr mir bitte helfen und den richtigen Weg aufzeigen?

Vielen Dank und noch einen schönen Abend!






        
Bezug
Zentraler Grenzwertsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 20:17 Do 13.01.2011
Autor: Walde

Hi JanisE,

es werden ja n unabh. Versuche durchgeführt. Seien [mm] X_i=\begin{cases} 1, & \mbox{wenn A bei der i-ten Durchführung eingetreten ist} \\ 0, & \mbox{wenn nicht} \end{cases}, [/mm] i=1...n Zufallsvariable. Diese sind bernoulliverteilt mit [mm] P(X_i=1)=P(A)=p [/mm] mit  [mm] E(X_i)=p [/mm] und [mm] Var(X_i)=p(1-p). [/mm]

Einerseits ist ihre Summe [mm] X=X_1+\cdots+X_n [/mm] binomialverteilt mit Paramtern n und p und zählt, wie oft das Ereignis A bei n Durchführungen eingetreten ist.

Andererseits, gilt nach dem ZGWS für die Teilsumme [mm] $X_1+\cdots+X_n$ [/mm] einer Folge [mm] X_1,X_2,X_3,\cdots [/mm] von iid ZVen, mit [mm] \mu=E(X_i) [/mm] und [mm] \sigma=\wurzel{Var(X_i)}: [/mm]

[mm] P(\bruch{X_1+\cdots+X_n-n\mu}{\sigma\wurzel{n}}\le z)\approx\Phi(z) [/mm]

Und man kann Umformen, [mm] \bruch{X_1+\cdots X_n-n\mu}{\sigma\wurzel{n}}=\bruch{X-n\mu}{\sigma\wurzel{n}}=\wurzel{n}\bruch{\bruch{X}{n}-\mu}{\sigma}, [/mm] wenn man im Zähler ein n ausklammert und [mm] \wurzel{n} [/mm] kürzt.

Was heisst das nun für die Aufgabe? Wenn du etwas in der Form [mm] $P(\bruch{X}{n}\le [/mm] k)$ hast, musst du es auf die Form von [mm] P(\wurzel{n}\bruch{\bruch{X}{n}-\mu}{\sigma}\le \wurzel{n}\bruch{k-\mu}{\sigma}) [/mm] bringen, dann kannst du die W'keit mit der Std.normalvert. ausrechnen.

LG walde


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]