www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maschinenbau" - Zentr. Kräftesystem Punkt
Zentr. Kräftesystem Punkt < Maschinenbau < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zentr. Kräftesystem Punkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:28 So 06.03.2016
Autor: Ulquiorra

Hallo,
wie findet man den gemeinsamen Angriffspunkt eines zentralen Kräftesystems?
Bei der resultierenden Kraft [mm] \vec{F} [/mm] und dem resultierenden Moment [mm] \vec{M}, [/mm] müsste ich dann so vorgehen:
[mm] \bruch{\vec{R} \times \vec{M}}{\vec{R}^{2}} [/mm] ?
Das ist die Formel, die ich mir aufgeschrieben habe, aber ich frag mich ob die auch allgemeingültig ist.

Mfg Ulq

        
Bezug
Zentr. Kräftesystem Punkt: Antwort
Status: (Antwort) fertig Status 
Datum: 11:16 So 06.03.2016
Autor: leduart

Hallo
doch eher [mm] r\times [/mm] M=F, also aus der Definition von M
Gruß leduart

Bezug
                
Bezug
Zentr. Kräftesystem Punkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:42 So 06.03.2016
Autor: Ulquiorra

Ich hab oben ein Fehler gemacht, also die Resultierende war nicht [mm] \vec{F}, [/mm] sondern [mm] \vec{R} [/mm] in der Gleichung.

> Hallo
>   doch eher [mm]r\times[/mm] M=F, also aus der Definition von M

Genau das habe ich mir auch aufgeschrieben,bloß, dass bei mir [mm] \vec{r} \times \vec{F} [/mm] = [mm] \vec{M}, [/mm] da aber nach r gefragt war müsste man ja nach r eliminieren. Und direkt nach der Gleichung kommt ein Folgepfeil und dann steht da die obige Gleichung. Mir ist auch keine Möglichkeit eingefallen wie ich nach r eliminiere, da ich die "Gegenoperation" für das Kreuzprodukt nicht kenne.
Also dachte ich mir entweder ist die Gegenoperation kompliziert genug gewesen für meinen Dozenten die wegzulassen und direkt die umgeformte Gleichung hinzuschreiben oder es gibt keine, aber dafür eine andere Herleitung für die Gleichung um den Punkt zu bestimmen.

Ulq


Bezug
                        
Bezug
Zentr. Kräftesystem Punkt: Antwort
Status: (Antwort) fertig Status 
Datum: 20:57 So 06.03.2016
Autor: leduart

Hallo
was soll denn deine Formel  ich schreibe F statt R
(F [mm] \times M)/|F|^2 [/mm]
ergeben? den Vektor r? das kann nicht allgemein stimmen, denn  [mm] F\times [/mm] M steht senkrecht auf r und das ist ja nicht allgemein richtig.
aber wenn du Drehmoment und Kraft kennst, dann kannst du ja den Angriffspunkt daraus nicht bestimmen, es se denn F und r stehen senkrecht aufeinander.
vielleicht sagst du den Zusammenhang , in dem die Formel auftaucht?
Gruß leduart

Bezug
                                
Bezug
Zentr. Kräftesystem Punkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:23 So 06.03.2016
Autor: Ulquiorra

Hallo,
der Zusammenhang war dieser, dass ich einen Quader im kartesischen Koordinatensystem vor mir liegen hatte und an bestimmten Ecken Kräfte wirkten.
Die Kräfte zeigten jeweils nur in eine Richtung einer Achse. Also die eine Kraft ging horizontal, eine andere vertikal, eine aus der Zeichenebene heraus usw.
Ich hätte jetzt gesagt, dass dieses Kräftesystem kein zentrales Kräftesystem ist, da sich nicht alle Wirkungslinien an einem Punkt schneiden, doch dann wurde halt gefragt

> Ist das Kräftesystem äquivalent zu einem zentralen Kräftesystem? Bestimmen Sie in diesem Fall den gemeinsamen Angriffspunkt und den resultierenden Kraftwinder bezüglich dieses Punktes.

Und zu dem Teil hat mein Dozent dann geschrieben:

[mm] \vec{r_{P}} \times \vec{R} [/mm] = [mm] \vec{M} [/mm]

wobei [mm] r_{P} [/mm] der gemeinsame Angriffspunkt sein soll, R die resultierende Kraft und M dann das resultierende Moment. Diese haben wir schon im voraus berechnet, weil wir den äquivalenten Kraftwinder zum Koordinatenursprung aufgestellt hatten, d.h. [mm] \vec{R} [/mm] und [mm] \vec{M} [/mm] waren gegeben.

daraufhin folgte dann der Schritt mit der komischen Umformung [mm] \vec{r_{P}} [/mm] = [mm] \bruch{\vec{R} \times \vec{M}}{\vec{R^{2}}} [/mm]
und [mm] \vec{R^{2}} [/mm] wurde hier skalar mit sich selbst multipliziert

Ich hab mir auch den Rest der reinen Rechnerei aufgeschrieben und es kommt mit dieser Gleichung auch der richtige Punkt (mit der vorher ausgegebenen Musterlösung verglichen) raus.

Wenn das immer noch nicht klar ist, kann ich das ja versuchen wieder mit Paint anzumalen und dann mit Werten zu rechnen.

Mfg Ulq

Bezug
                                        
Bezug
Zentr. Kräftesystem Punkt: Antwort
Status: (Antwort) fertig Status 
Datum: 11:05 Mo 07.03.2016
Autor: leduart

Hallo
so weit ich das übersehe, suchst du ja hier auch ein r, das senkrecht auf F steht, dann ist die Rechnung klar,
für F senkrecht zu r is das ja praktisch nur der Betrag von r und die Richtung senkrecht zu F.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]