www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Zeitliche Abweichung
Zeitliche Abweichung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeitliche Abweichung: Idee
Status: (Frage) beantwortet Status 
Datum: 15:12 Fr 19.06.2015
Autor: djisik

Aufgabe
Hallo,
ich habe eine Problem mit meiner Aufgabenstellung.

Zwei Fahrzeuge fahren in entgegengesetzter Richtung mit der relativen Geschwindigkeit:

PKW1 v1 = 50km/h und PKW2 v2 = 60km/h

Nun kann ich über die Geschwindigkeit und einem Abstand l (BSP: 100m) den Treffpunkt auf der Strecke l zu einem bestimmten Zeitpunkt bestimmen.

s = [mm] s_1 [/mm] + [mm] s_2 [/mm] = 100m
s = [mm] v_1 [/mm] * t + [mm] v_2 [/mm] *t  -> t = [mm] s/(v_1 [/mm] + [mm] v_2) [/mm] [s]

Soweit so gut.

Wenn nun eine zeitliche Abweichung [mm] \pm [/mm] 100ms fehleingeschätzt wird, wie wirkt sich das auf den Treffpunkt aus?

Ansatz:
v_rel = 50+60 km/h = 110km/h
[mm] \Delta [/mm] s = [mm] v_1*t [/mm] + [mm] v_2*(t+ \Delta [/mm] t)

Irgendwie fehlt mir die Überleitung/Zusammenhang, um aus den Geschwindigkeiten und dem Fehler [mm] \Delta [/mm] t eine allgemein gültige Formel zu generiere.

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.matheplanet.com/default3.html?call=viewforum.php?forum=-2&ref=http%3A%2F%2Fwww.google.de%2Furl%3Fsa%3Dt%26rct%3Dj%26q%3D%26esrc%3Ds%26source%3Dweb%26cd%3D5%26ved%3D0CEgQFjAE

http://www.matheboard.de/thread.php?threadid=557585

        
Bezug
Zeitliche Abweichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:15 Fr 19.06.2015
Autor: chrisno


> Hallo,
>  ich habe eine Problem mit meiner Aufgabenstellung.
>  
> Zwei Fahrzeuge fahren in entgegengesetzter Richtung mit der
> relativen Geschwindigkeit:

Das Wort relativ ist hier fehl am Platz, du gibst die Geschwindigkeiten gegenüber einem (ruhenden) Beobachter an. Es gibt für die beiden nur eine relative Geschwindigkeit, die Du weiter unten auch berechnest.

>
> PKW1 v1 = 50km/h und PKW2 v2 = 60km/h
>  
> Nun kann ich über die Geschwindigkeit und einem Abstand l
> (BSP: 100m) den Treffpunkt auf der Strecke l zu einem
> bestimmten Zeitpunkt bestimmen.
>
> s = [mm]s_1[/mm] + [mm]s_2[/mm] = 100m
>  s = [mm]v_1[/mm] * t + [mm]v_2[/mm] *t  -> t = [mm]s/(v_1[/mm] + [mm]v_2)[/mm]

>
> Soweit so gut.
> Wenn nun eine zeitliche Abweichung [mm]\pm[/mm] 100ms
> fehleingeschätzt wird, wie wirkt sich das auf den
> Treffpunkt aus?
>
> Ansatz:
>  v_rel = 50+60 km/h = 110km/h

Nun machst Du es allgemeiner:

> [mm]\Delta[/mm] s = [mm]v_1*t[/mm] + [mm]v_2*(t+ \Delta[/mm] t)

Da hast Du nur den Fehler für die eine Messung berücksichtigt. Mit
[mm]\Delta s = v_1*(t+ \Delta t ) + v_2*(t+ \Delta t )[/mm] machst Du die sogenannte Größtfehlerabschätzung. Dabei nimmst Du an, dass sich beide Fehler in ihrem Effekt maximal verstärken. Weiter geht es dann mit [mm]\Delta s = (v_1 + v_2)*(t+ \Delta t ) [/mm]
Wenn die Fehler der einzelnen Messungen normalverteilt und unabhängig voneinander sind, kannst Du mit der Gaußschen Fehlerfortpflanzung rechnen. Die möchte ich erst einmal nicht hier hinschreiben.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]