www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Zeigen von Konvergenz
Zeigen von Konvergenz < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeigen von Konvergenz: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:34 Mo 14.11.2011
Autor: KaJaTa

Aufgabe
Bestimmen Sie folgende Grenzwerte mit Hilfe der Rechenregeln für Folgen.
Begründen Sie jeweils kurz, dass die Voraussetzungen für die Anwendung der Regeln erfüllt sind.

Wie zeige ich, dass eine Folge konvergent ist, damit ich die Rechenregeln anwenden kann.
Z.B. bei

[mm] \limes_{n\rightarrow\infty}=(1+n^{2})*(\bruch{1}{n^{4}}-\bruch{1}{n^{2}}) [/mm]

        
Bezug
Zeigen von Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:42 Mo 14.11.2011
Autor: schachuzipus

Hallo KaJaTa,


> Bestimmen Sie folgende Grenzwerte mit Hilfe der
> Rechenregeln für Folgen.
>  Begründen Sie jeweils kurz, dass die Voraussetzungen für
> die Anwendung der Regeln erfüllt sind.
>  Wie zeige ich, dass eine Folge konvergent ist, damit ich
> die Rechenregeln anwenden kann.
> Z.B. bei
>  
> [mm]\limes_{n\rightarrow\infty}=(1+n^{2})*(\bruch{1}{n^{4}}-\bruch{1}{n^{2}})[/mm]

Was soll das bedeuten?

Insbesondere das "=" ??

Das ergibt doch überhaupt keinen Sinn ...

Du meinst [mm]\lim\limits_{n\to\infty}\left[\left(1+n^2\right)\cdot{}\left(\frac{1}{n^4}-\frac{1}{n^2}\right)\right][/mm]

Nun, du weißt, dass das Produkt zweier konvergenter Folgen konvergent ist und der GW das Produkt der "Einzel"grenzwerte ist.

Hier ist "leider" die Folge [mm]\left(1+n^2\right)_{n\in\IN}[/mm] divergent, die andere konvergent, das hilft also nix.

Multipliziere die beiden Klammern miteinander, das ergibt:

[mm]\frac{1}{n^4}-\frac{1}{n^2}+\frac{1}{n^2}-1=\frac{1}{n^4}-1[/mm]

Was treibt das für [mm]n\to\infty[/mm]?

Welche Rechenregel für Grenzwerte nutzt du dabei?

Gruß

schachuzipus


>  


Bezug
                
Bezug
Zeigen von Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:58 Mo 14.11.2011
Autor: KaJaTa

Danke für den Tipp. Das mit dem = war natürlich nur eine Unachtsamkeit.

Durch die Umformung sieht man halt, dass nun beide Folgenglieder konvergieren. Einmal gg 0 und 1. Und die Differenz beider Einzelgrenzwerte ist nunmal der Gesamtgrenzwert.
Hier -1

Dankeschön



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]