www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - Zahlpartitionen, Beweis
Zahlpartitionen, Beweis < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zahlpartitionen, Beweis: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:39 Mo 11.02.2013
Autor: quasimo

Aufgabe
Sei  [mm] H=\{h_1 , h_2 ,...\} \subseteq \IN [/mm] $, p(H,n) die Anzahl aller Zahlpartitionen von n, deren Teilesämtlich Elemente aus H sind. Dann gilt für die erzeugende Funktion:
[mm] F_H [/mm] (z) := [mm] \sum_{n\ge0} [/mm] p(H,n) [mm] z^n [/mm] = [mm] \prod_{n\in H} \frac{1}{1-z^n} [/mm]

Bew
$ [mm] \prod_{n\in H} \frac{1}{1-z^n}= \prod_{n\in H} [/mm] $ (1 + $ [mm] z^n [/mm] $ + $ [mm] z^{2n} [/mm] $ + $ [mm] z^{3n}+..) [/mm] $ = (1 [mm] +z^{h_1} +z^{h_1}+..)* [/mm] (1 [mm] +z^{h_2} +z^{h_2}+..)* [/mm] (1 [mm] +z^{h_3} +z^{h_3}+..)*..= \sum_{i_1\ge0} \sum_{i_2 \ge0} \sum_{i_3 \ge 0}... z^{i_1 h_1 + i_2 h_2 +i_3 h_3+..} [/mm]
und den exponenten von z deutet wir als Partition die natürlich nur teile [mm] h_i \in [/mm] H enthält. Die Potenz kommt also in der Entwicklung so oft vor, wie es partitionen von n mit Teilen aus H gibt.

Hallo
Ich habe Probleme mit dem Beweis.
Ich verstehe den Schluss mit die Partitionen des Exponenten nicht. Also warum das genau so ist.

LG

        
Bezug
Zahlpartitionen, Beweis: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mi 13.02.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]