www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Zahlensequenz 1 2 3 6 7 14 26
Zahlensequenz 1 2 3 6 7 14 26 < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zahlensequenz 1 2 3 6 7 14 26: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:02 Mo 09.09.2013
Autor: askaquestion

Aufgabe
1 2 3 6 7 (x) 26
x = 14


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich war mir sehr unsicher, wo ich in diesem Riesenforum posten sollte und hoffe mal, dass es passt.

Zur Frage - Ich versuche den Zusammenhang der Zahlen zu verstehen, damit ich die Zahlenfolge dann auch selber rekonstruieren kann.

Zunächst kann man ja mal davon ausgehen, dass die ungeraden Zahlen verdoppelt werden, aber wenn ich das so betrachte, dass gerade Zahlen und ungerade Zahlen einzeln betrachtet und behandelt werden, dann ist für mich logischerweise der Sprung von 14 auf 26 unverständlich.

Nach welchem Schema richtet sich diese Zahlenfolge denn nun?

Optional würde mich auch interessieren, mit welcher Methode man die Zusammenhänge rauskriegt.

Danke im voraus.

        
Bezug
Zahlensequenz 1 2 3 6 7 14 26: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:10 Mo 09.09.2013
Autor: Diophant

Hallo und

[willkommenmr]

Meiner Ansicht nach ist die Frage so nicht so ganz verständlich. Könntest du mal auf folgende Punkte noch näher eingehen:

- Was soll das x sein (Vermutung: man soll sagen, welche Zahl an dieser Stelle fehlt, aber das gehört dann explizit in die Fragestellung)
- Woher stammt diese Aufgabe bzw, in welchem Zusammenhang stellt sie sich dir?

Es ist dir hoffentlich klar, dass es für derlei Aufgaben niemals eine eindeutige Lösung geben kann, soweit nicht noch weitere Forderungen an die Folge gestellt sind?


Gruß, Diophant

Bezug
                
Bezug
Zahlensequenz 1 2 3 6 7 14 26: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:34 Mo 09.09.2013
Autor: askaquestion

Die Frage war eine Art Quiz in einem MMORPG(Online-Spiel) und es standen Antwort A bis D zur Auswahl.
Ich habe mir aber nur das wichtigste notiert und erinnere mich nicht an den Rest.

Über google habe ich die Zahlenfolge auf 5 seiten gefunden mit mindestens einem Beispiel, das der Zahlenfolge sehr ähnelt mit dem einzigen Unterschied, dass in dem Fall nach der letzten Zahl gefragt wird.
Da aber auch dort jemand mit 26 antwortet, interessiert mich die Logik dahinter. Die Antworten waren auf chinesisch und ich begreife die Erklärung auch durch google translate nicht.
Vielleicht wäre auch erwähnenswert, wenn auch unnötig für die Fragestellung, dass die Betreiber des Spiels, in dem meine Version der Frage gestellt wurde, ebenfalls chinesischer Herkunft sind.

Mit mehreren Antworten bin ich auch zufrieden sofern sich diese möglichst simpel ausdrücken lassen.

Danke für die schnelle Antwort und ich hoffe mal, dass ich die richtigen Knöpfe in diesem forum gedrückt hab :x

Hier noch die chinesische Seite, die ich über google gefunden habe(unabhängig, aber evtl. zusammenhängend mit meiner Fragestellung):
http://zhidao.baidu.com/question/312364839.html

Sagt Bescheid, falls links posten unerwünscht ist

Bezug
        
Bezug
Zahlensequenz 1 2 3 6 7 14 26: Antwort
Status: (Antwort) fertig Status 
Datum: 12:41 Mo 09.09.2013
Autor: Diophant

Hallo,

> 1 2 3 6 7 (x) 26
> x = 14

>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

>

> Ich war mir sehr unsicher, wo ich in diesem Riesenforum
> posten sollte und hoffe mal, dass es passt.

Passt scho.

>

> Zur Frage - Ich versuche den Zusammenhang der Zahlen zu
> verstehen, damit ich die Zahlenfolge dann auch selber
> rekonstruieren kann.

Das ist aus mathematischer Sicht ein völlig sinnloses Unterfangen.

>

> Zunächst kann man ja mal davon ausgehen, dass die
> ungeraden Zahlen verdoppelt werden, aber wenn ich das so
> betrachte, dass gerade Zahlen und ungerade Zahlen einzeln
> betrachtet und behandelt werden, dann ist für mich
> logischerweise der Sprung von 14 auf 26 unverständlich.

>

Ohne die 26 wäre deine Interpretation sicherlich die naheliegendste. Es ist aber so: du kannst die Folge mit jeder beliebigen Zahl fortsetzen und dann ein passendes Gesetz dazu 'erfinden', etwa durch ein Polynom.

So würde die ganzrationale Funktion f mit

[mm]f(n)= -\frac{13}{240}n^6+\frac{103}{80}n^5-\frac{575}{48}n^4+\frac{2659}{48}n^3-\frac{1987}{15}n^2+\frac{9229}{60}n-65[/mm]

für die entsprechnden Platznummern ab n=1 genau die von dir angegebenen Werte zurückliefern. Und es kommt noch besser: es lassen sich zu jeder endlichen Anzahl von Folgengliedern unendlich viele mögliche Gesetzmäßigkeiten angeben.

Von daher: so etwas ist eher dem Bereich IQ-Tests zuzuordnen, ein vernünftiges mathematisches Problem ist es nicht.

> Nach welchem Schema richtet sich diese Zahlenfolge denn
> nun?

Wie gesagt: such dir eins aus. :-)

> Optional würde mich auch interessieren, mit welcher
> Methode man die Zusammenhänge rauskriegt.

Theoretisch gibt es einige Dinge, die man sicherlich als erstes versuchen würde. Bspw. Differenzen und Quotienten aufeinanderfolgender Glieder betrachten, prüfen ob eine Fibbonacci-Folge vorliegt oder sonst ein einfacher rekursiver Zusammenhang erkennbar ist, etc. Aber eine Methodik in dem Sinne gibt es aus den genannten Gründen  nicht.

Man kann bspw. []hier Zahlensequenzen eingeben und bekommt mögliche Gesetzmäßigkeiten aufgelistet. Für deine Folge bis zur 14 spuckt die Seite mehrere Möglichkeiten aus, es geht aber nirgends mit 26 weiter. Mit der 26 bekommt man kein Resultat, was aber eben nicht heißt, dass es kein Bildungsgesetz gibt.


Gruß, Diophant

Bezug
                
Bezug
Zahlensequenz 1 2 3 6 7 14 26: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:22 Mo 09.09.2013
Autor: askaquestion

Hmm, danke für die Antwort und für den Link auf die Seite, die Sequenzen erkennt.

Da wir hier keine simplen mathematischen Zusammenhänge finden können, werde ich mich, wie du es vorgeschlagen hast, an ein IQ-Test Forum oder sonst etwas mit breiterem Spektrum wenden.

Ich bin gar nicht erst auf die Idee gekommen, dass die Zahlen eine symbolische Bedeutung oder so haben könnten und das war wohl mein entscheidender Fehler, was das ganze aber eigentlich nur noch komplizierter macht xD

Hat mich gefreut deine Hilfe in Anspruch genommen zu haben.

Bezug
        
Bezug
Zahlensequenz 1 2 3 6 7 14 26: Antwort
Status: (Antwort) fertig Status 
Datum: 12:47 Mo 09.09.2013
Autor: fred97

Ich habs in diesem Forum schon mehrfach gesagt:

Eine endliche Folge wie 1 2 3 6 7 14 26 lässt sich immer periodisch fortsetzen:

1 2 3 6 7 14 26 1 2 3 6 7 14 26 1 2 3 6 7 14 26 .......

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]