www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Zahlenrätsel- Lineare Gleichun
Zahlenrätsel- Lineare Gleichun < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zahlenrätsel- Lineare Gleichun: Lösungsansatz
Status: (Frage) beantwortet Status 
Datum: 18:30 Mo 16.04.2007
Autor: IceHunter

Aufgabe
In den folgenden Zahlenrätsel ist n eine dreistellige Zahl. Bestimmen sie jeweils alle natürlichen Zahlen mit den angegebenen Eigenschaften.

a) Die Quersumme von n ist 12. Schreibt man die Ziffer von n in umgekerter Reihenfolge, so ergibt sich 24 weniger als das Dreifache von n.

B) Die letzte Ziffer ist um 2 größer als die erste. Lässt man die erste Ziffer weg und multipiziert mit 8, so erhält man 15 mehr als n.

c) Schreibt man die Ziffer von n in umgekerter Reihenfolge und subtrahiert die erhaltene Zahl von n, so ergibt sich 693. Die Summe der esten und letzten ziffer ist 11.

Wäre schön, wenn jemand mir den Lösungsweg dafür schreiben könnte... wir sollen das ganze in Matrixform lösen...mein problem dabei ist, das man ja sowohl x1,x2,x3 als auch n in den gleichungen hat....ich weiß nicht wie ich mit dem n umgehen soll und auch nicht, wie man die zahlen in umgedrehter reihenfolge schreiben soll, würden dann nicht die vorzeichen wegfallen...kann bei der aufgabe wirklich nicht viel bieten...

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.forumromanum.de

        
Bezug
Zahlenrätsel- Lineare Gleichun: Antwort
Status: (Antwort) fertig Status 
Datum: 19:35 Mo 16.04.2007
Autor: Steffi21

Hallo,

zu a) bedenke, eine dreistellige Zahl besteht aus den Ziffern [mm] x_1, x_2 [/mm] und [mm] x_3, [/mm] machen wir es z. B. für 527, dann bedeutet das: 5*100+2*10+7*1, die Ziffern haben ja einen bestimmten Stellenwert,
1. GL: [mm] x_1+x_2+x_3=12 [/mm]
2. GL: [mm] 100*x_3+10*x_2+x_1=3*(100*x_1+10*x_2+x_3)-24 [/mm]

jetzt hast du für drei Unbekannte nur zwei Gleichungen, also arbeiten mit einem Parameter, wähle z. B. [mm] x_1=p [/mm]

Du erhälst 309:

3+0+9=12
903=3*309-24

Steffi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]