www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Zahlenfolgen
Zahlenfolgen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zahlenfolgen: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:30 Do 22.09.2005
Autor: Walhallajinx

Hallo
Ich hab folgende Probleme:
Aufgabe 1:
Die Folge (an) ist durch eine Rekursionsformel gegben. Berechne die ersten fünf Glieder der Folge  a1=  [mm] \bruch{1}{2} [/mm]
                              an=  [mm] \bruch{1}{2} [/mm] an-1

Aufgabe 2:
Berechnen Sie die ersten fünf Glieder der rekursiv dargestellten Zahlenfolge (an). Versuchen sie eine explizite Darstellung der Folge anzugeben
a) a=1 ; an+1=2+an

b) a1=  [mm] \bruch{1}{2} [/mm] ;  an+1=  1/an



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Zahlenfolgen: zu Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 21:34 Do 22.09.2005
Autor: Loddar

Hallo Walhallajinx!


> Die Folge (an) ist durch eine Rekursionsformel gegben.
> Berechne die ersten fünf Glieder der Folge  a1= [mm]\bruch{1}{2}[/mm]
>                                an=  [mm]\bruch{1}{2}[/mm] an-1

Wo sind denn hier Deine Probleme?

Wir haben doch:  [mm] $a_1 [/mm] \ = \ [mm] \bruch{1}{2}$ [/mm]

Damit wird:

[mm] $a_2 [/mm] \ = \ [mm] \bruch{1}{2} [/mm] * [mm] a_1 [/mm] \ = \ [mm] \bruch{1}{2} [/mm] * [mm] \bruch{1}{2} [/mm] \ = \ [mm] \bruch{1}{4}$ [/mm]

[mm] $a_3 [/mm] \ = \ [mm] \bruch{1}{2} [/mm] * [mm] a_2 [/mm] \ = \ ...$


Die restlichen Glieder solltest Du doch nun selber hinkriegen, oder?

Gruß
Loddar


Bezug
                
Bezug
Zahlenfolgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:39 Do 22.09.2005
Autor: Walhallajinx

Ah, ja, habs verstanden , danke.
Ich dachte irgendwie, dass man erst  [mm] \bruch{1}{2} [/mm] -1 und dann mal  [mm] \bruch{1}{2} [/mm] nehmen musste.

Bezug
        
Bezug
Zahlenfolgen: zu Aufgabe 2
Status: (Antwort) fertig Status 
Datum: 21:41 Do 22.09.2005
Autor: Loddar

Hallo Walhallajinx!


Auch bei dieser Aufgabe solltest Du Dir nach ähnlichem Schema wie oben die ersten 5 Glieder ermitteln.


Dann kann man sich auch eine explizite (d.h. eine nicht-rekursive) Darstellung erarbeiten.

Bei a.) hilft vielleicht der Hinweis arithmetische Folge (siehe auch []hier !) etwas weiter.


Bei b.) solltest Du die Glieder dann in Potenzschreibweise darstellen, damit es klappt mit der expliziten Darstellung.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]