www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Zahlenfolgen
Zahlenfolgen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zahlenfolgen: Monotonie
Status: (Frage) beantwortet Status 
Datum: 17:00 Mo 26.10.2009
Autor: Crichnoq

Aufgabe
an = 24 / (n+2)(n+3)





Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich soll beweisen das diese Folge monton fallend ist.
Habe jetzt (an) umgestellt auf (an+1), und habe folgendes raus,
an = 24 / [mm] n^2+7n+12 [/mm]

Nun habe ich (an) und (an+1) gegenübergestellt und ausgerechnet und als Endergebnis: -48 ≤ 144

Das beweißt das die Zahlenfolge monoton fallend ist.

Ich bin mir allerdings nicht ganz sicher ob das stimmt, und bräuchte jetzt mal eine Meinung.

        
Bezug
Zahlenfolgen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:08 Mo 26.10.2009
Autor: meep

hi,

ja einfach zeigen, dass [mm] a_{n} \ge a_{n+1} [/mm] -> monoton fallend

in deinem fall wäre das dann [mm] \bruch{24}{(n+2)(n+3)} \ge \bruch{24}{(n+3)(n+4)} [/mm]

ausrechnen, prüfen ob die aussage wahr ist und falls ja haste ja was du wolltest

mfg

meep

Bezug
                
Bezug
Zahlenfolgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:21 Mo 26.10.2009
Autor: Crichnoq

Aufgabe
an = 24 / (n+2)(n+3)

Behauptung: (an) monoton fallend

Beweis:
an+1 ≤ an

[mm] 24/n^2+7n+12 [/mm] ≤ [mm] 24/n^2+5n+6 [/mm]

[mm] 24(n^2+5n+6) [/mm] ≤ [mm] 24(n^2+7n+12) [/mm]

[mm] 24n^2+120n+144 [/mm] ≤ [mm] 24n^2+168n+288 [/mm]                 l [mm] -24n^2 [/mm]

120n+144 ≤ 168n+288                                          l -168n

-48n+144 ≤ 288                                                     l -144

-48n ≤ 144

w. A. Zahlenfolge ist monoton fallend


Ist dieser Lösungsweg richtig oder muss ich mit den beiden letzten Zahlen noch etwas machen (z.B. dividieren oder so ähnlich)?

Bezug
                        
Bezug
Zahlenfolgen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 Mo 26.10.2009
Autor: meep

[mm] a_{n} \ge a_{n+1} [/mm]

[mm] \bruch{24}{(n+2)(n+3)} \ge \bruch{24}{(n+3)(n+4)} [/mm]

[mm] \bruch{1}{(n+2)(n+3)} \ge \bruch{1}{(n+3)(n+4)} [/mm]

nun mit HN durchmultiplizieren ergibt

n + 4 [mm] \ge [/mm] n+2

2 [mm] \ge [/mm] 1

das is ne wahre aussage also stimmt obige behauptung

Bezug
        
Bezug
Zahlenfolgen: Monotonie
Status: (Frage) beantwortet Status 
Datum: 17:31 Mo 26.10.2009
Autor: Crichnoq

Aufgabe
an = 24 / (n+2)(n+3)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Behauptung: (an) monoton fallend

Beweis:
an+1 ≤ an

[mm] 24/n^2+7n+12 [/mm] ≤ [mm] 24/n^2+5n+6 [/mm]

[mm] 24(n^2+5n+6) [/mm] ≤ [mm] 24(n^2+7n+12) [/mm]

[mm] 24n^2+120n+144 [/mm] ≤ [mm] 24n^2+168n+288 [/mm]                 l [mm] -24n^2 [/mm]

120n+144 ≤ 168n+288                                          l -168n

-48n+144 ≤ 288                                                     l -144

-48n ≤ 144

w. A. Zahlenfolge ist monoton fallend


Ist dieser Lösungsweg richtig oder muss ich mit den beiden letzten Zahlen noch etwas machen (z.B. dividieren oder so ähnlich)?

Bezug
                
Bezug
Zahlenfolgen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:39 Mo 26.10.2009
Autor: abakus


> an = 24 / (n+2)(n+3)
>  Behauptung: (an) monoton fallend
>  
> Beweis:
>  an+1 ≤ an
>  
> [mm]24/n^2+7n+12[/mm] ≤ [mm]24/n^2+5n+6[/mm]
>  
> [mm]24(n^2+5n+6)[/mm] ≤ [mm]24(n^2+7n+12)[/mm]
>  
> [mm]24n^2+120n+144[/mm] ≤ [mm]24n^2+168n+288[/mm]                 l [mm]-24n^2[/mm]
>  
> 120n+144 ≤ 168n+288                                      
>    l -168n
>  
> -48n+144 ≤ 288                                            
>          l -144
>  
> -48n ≤ 144
>  
> w. A. Zahlenfolge ist monoton fallend
>  
>
> Ist dieser Lösungsweg richtig oder muss ich mit den beiden
> letzten Zahlen noch etwas machen (z.B. dividieren oder so
> ähnlich)?

Hallo, dein Lösungsweg ist grundsätzlich verkehrt- aber das kann man reparieren.
Ein Beweis beginnt NIE - ich wiederhole: NIE - mit der Behauptung.
Mögliche Variante 1:
Du beginnst mit deinem Schluss:
Für alle n>0 gilt -48n<144.
Daraus folgt -48n+144<288
...
bis du bei der 1. Zeile deines Beweises ankommst. Dann hast du von einer wahren Aussage auf die Behauptung geschlossen. Achte allerdings darauf, dass an den Stellen, an denen du eine Ungleichung mit irgendwelchen Termen multiplizierst oder dividierst, diese Faktoren ganz sicher positiv sind (sonst wäre eine Fallunterscheidung betreffs möglicher Relationszeichenumkeht nötig).
Variante 2:
Betrachte einfach nur den Term [mm] a_{n+1}-a_n [/mm]  und forme ihn so lange um, bis er erkennbar positiv oder negativ ist.
z.B. so:
[mm] a_{n+1}-a_n =\bruch{24}{(n+3)(n+4)}-\bruch{24}{(n+2)(n+3)} [/mm]
[mm] =\bruch{24(n+2)}{(n+2)(n+3)(n+4)}-\bruch{24(n+4)}{(n+2)(n+3)(n+4)}=\bruch{...}{(n+2)(n+3)(n+4)} [/mm]
Der Nenner dieses Terms ist für n>0 offensitzlich positiv, du musst also nur noch den Zahler ausrechnen.
Gruß Abakus



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]