www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Zahlen
Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zahlen: Frage
Status: (Frage) beantwortet Status 
Datum: 10:21 Fr 10.06.2005
Autor: Binu

Hallo an alle!
Stecke mal wieder total fest an meinen Übungsaufgaben ;-( Hoffe mir kann jemand helfen..

Aufgabe 1) Geben sie für die angegebenen Zahlen die 27.Stelle hinter dem Komma an, und entscheiden sie, ob es sich um eine rationale oder irrationale Zahl handelt:
a:= 0.2323232323...
b:= 0.2323323332...
c:= 0.2223232323...
d:= 0.1001000010000001...

(Lösungsansatz: Kann ich nun einfach die Zahlenfolgen entsprechend auf die 27. Kommastelle verlängern oder muss ich das rechnerisch machen?)

Aufgabe 2) Geben sie für die Zahl d aus Aufgabe 1 die Ziffernfolge [mm] (a_{n})n [/mm] Element natürliche Zahlen an, für die gilt:

d= [mm] \summe_{n=1}^{\infty} a_{n} *(1/10)^{n} [/mm]

(Lösungsansatz: Muss man das durch probieren rausfinden oder gibt es auch hier einen Rechnenweg?)

Aufgabe 3a) Bestimmen sie alle Zahlen k Element natürliche Zahlen, für die 1/kFakultät /le [mm] (1/2)^{k} [/mm]

(Lösungsansatz: Habe durch probieren herausgefunden, dass dies erst für k grösser gleich 4 gilt und möchte dies nun mit Hilfe der Induktion beweisen, aber starte ich meine Induktion nun mit k=1 oder mit k=4 und wie komme ich dann von 1/4Fakultät wieder auf [mm] (1/2)^{k}?) [/mm]

Aufgabe 3b) Zeigen sie, dass für alle natürlichen Zahlen n gilt:

[mm] \summe_{k=0}^{n} [/mm] 1/kFakultät < 67/24, und geben sie 67/24 als Dezimalbruch an.

(Lösungsansatz: Habe 67/24 als Dezimalbruch ausgerechnet /approx 2,791667, aber wie kann ich das nun zeigen?)

Ich danke euch im vorraus - Mfg

        
Bezug
Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:52 Fr 10.06.2005
Autor: Gnometech

Grüße!

Hui, soviele Fragen auf einmal... ;-)

Ich werde mal versuchen, darauf einzugehen.
  

> Aufgabe 1) Geben sie für die angegebenen Zahlen die
> 27.Stelle hinter dem Komma an, und entscheiden sie, ob es
> sich um eine rationale oder irrationale Zahl handelt:
>  a:= 0.2323232323...
>  b:= 0.2323323332...
>  c:= 0.2223232323...
>  d:= 0.1001000010000001...
>  
> (Lösungsansatz: Kann ich nun einfach die Zahlenfolgen
> entsprechend auf die 27. Kommastelle verlängern oder muss
> ich das rechnerisch machen?)

Naja, ich denke die Aufgabe ist schon so gedacht, dass man "raten" soll, wie es weitergeht. Es ist ja nicht schwer, das jeweilige System zu entdecken, auch wenn ich solche Aufgaben nicht mag - denn "theoretisch" könnte es ja auch ganz anders weitergehen. ;-) Aber hier wird es wohl so gemeint sein.

Übrigens sollte aus der Vorlesung bekannt sein, dass ein Dezimalbruch genau dann eine rationale Zahl ist, wenn er (irgendwann) periodisch ist.

> Aufgabe 2) Geben sie für die Zahl d aus Aufgabe 1 die
> Ziffernfolge [mm](a_{n})n[/mm] Element natürliche Zahlen an, für die
> gilt:
>  
> d= [mm]\summe_{n=1}^{\infty} a_{n} *(1/10)^{n}[/mm]
>  
> (Lösungsansatz: Muss man das durch probieren rausfinden
> oder gibt es auch hier einen Rechnenweg?)

Das ist nur eine Formalisierung der Überlegung aus der ersten Aufgabe. Die Nachkommastellen bestehen ja aus 1 oder 0, wobei die 1 nur an bestimmten Stellen auftritt. Du mußt jetzt herausfinden, an welchen genau und dann gilt für diese $n$ eben [mm] $a_n [/mm] = 1$ und für alle anderen gilt [mm] $a_n [/mm] = 0$.

> Aufgabe 3a) Bestimmen sie alle Zahlen k Element natürliche
> Zahlen, für die 1/kFakultät /le [mm](1/2)^{k}[/mm]
>  
> (Lösungsansatz: Habe durch probieren herausgefunden, dass
> dies erst für k grösser gleich 4 gilt und möchte dies nun
> mit Hilfe der Induktion beweisen, aber starte ich meine
> Induktion nun mit k=1 oder mit k=4 und wie komme ich dann
> von 1/4Fakultät wieder auf [mm](1/2)^{k}?)[/mm]

Naja, für die ersten ist es ja schlicht falsch - daher mach Deinen Induktionsanfang mit $k = 4$. Für den Induktionsschritt spielt das ja keine Rolle, da Du dort ja ohnehin von beliebigem $k$ auf $k + 1$ schließt.

> Aufgabe 3b) Zeigen sie, dass für alle natürlichen Zahlen n
> gilt:
>  
> [mm]\summe_{k=0}^{n}[/mm] 1/kFakultät < 67/24, und geben sie 67/24
> als Dezimalbruch an.
>  
> (Lösungsansatz: Habe 67/24 als Dezimalbruch ausgerechnet
> /approx 2,791667, aber wie kann ich das nun zeigen?)

Das geht mit Aufgabe a): die ersten 3 Summanden läßt Du stehen und für den Rest kannst Du benutzen, dass [mm] $\frac{1}{k!} \leq \left( \frac{1}{2}\right)^k$. [/mm] Dann erhältst Du eine geometrische Reihe (bzw. den Rest davon), deren Wert Du (aus der Vorlesung?) kennst.

Viel Erfolg!

Lars

Bezug
        
Bezug
Zahlen: zu 3b)
Status: (Antwort) fertig Status 
Datum: 12:13 Fr 10.06.2005
Autor: twentyeight

Hi,

noch eine Ergänzung zu 3b)

> Aufgabe 3b) Zeigen sie, dass für alle natürlichen Zahlen n
> gilt:
>  
> [mm]\summe_{k=0}^{n}[/mm] 1/kFakultät < 67/24, und geben sie 67/24
> als Dezimalbruch an.
>  
> (Lösungsansatz: Habe 67/24 als Dezimalbruch ausgerechnet
> /approx 2,791667, aber wie kann ich das nun zeigen?)
>  

Vielleicht weißt du, daß [mm]\sum_{i=0}^\infty\bruch{1}{k!}=e[/mm]. Und da bekanntlich [mm] e=2.718281828<2.791666667=\bruch{67}{24}[/mm] ist, folgt die Behauptung

mfg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]