www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik (Anwendungen)" - Zähldichte, ZV
Zähldichte, ZV < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zähldichte, ZV: Qualitätssicherung
Status: (Frage) überfällig Status 
Datum: 15:30 Mo 07.11.2011
Autor: mikexx

Aufgabe
Hallo, liebes Forum!

Hier meine Statistik-Frage:

In einer Warensendung aus N Stücken sind s Stücke defekt (N bekannt, s unbekannt). Es wird eine Stichprobe vom Umfang [mm]n\leq N[/mm] nacheinander ohne Zurücklegen gezogen. Man erhält eine Beobachtung [mm](x_1,\hdots,x_n)\in\left\{0,1\right\}^n[/mm] mit

[mm]x_i=1\Leftrightarrow \text{i-tes Stueck defekt}[/mm]
[mm]x_i=0\Leftrightarrow \text{i-tes Stueck nicht defekt}[/mm]

und das statistische Modell

[mm]M=\left\{0,1\right\}^n[/mm]

[mm]\mathcal{A}=\frak{P}(M)[/mm]

[mm]\mathcal{P}=(P_s)_{s\in\left\{0,1,\hdots,N\right\}}[/mm]


Bestimmen Sie die Zähldichte von [mm]P_s[/mm].

Machen Sie auch den Unterschied zur hypergeometrischen Verteilung deutlich und konstruieren Sie eine Zufallsvariable in der genannten Situation, die hypergeometrisch verteilt ist.


1.)

Ich würde sagen, der Unterschied zur hypergeometrischen Verteilung liegt darin, daß man bei der Stichprobe aus n Elementen auch Schadensstückzahlen [mm]>n[/mm] zuläßt, wohingegen man bei der hypergeometrischen Verteilung maximal n defekte Stücke zuläßt.

Korrekt?

2.)

Eine in der genannten Situation hypergeometrisch verteilte ZV X ist meiner Ansicht nach zum Beispiel:

[mm]X:(M,\operatorname{Pot}(M),\mathcal{H}_{n,N})\to (\left\{0,1,\hdots n\right\},\operatorname{Pot}(\left\{0,1,\hdots,n\right\}))[/mm]

Korrekt?

3.) Für die Zähldichte von [mm]P_s[/mm] wäre meine Idee:

[mm]p(s)=\binom{n}{\sum_{i=1}^{n}x_i}\cdot p^{\sum_{i=1}^{n}x_i}\cdot (1-p)^{\sum_{i=1}^{n}(1-x_i)}[/mm]

Korrekt?




Würde mich über Hilfe/ ein Feedback wirklich freuen!

LG

mikexx

        
Bezug
Zähldichte, ZV: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:23 Mi 09.11.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]