www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Z/13Z unterkörper von C
Z/13Z unterkörper von C < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Z/13Z unterkörper von C: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:16 Fr 14.12.2007
Autor: lenz

Aufgabe
kann Z/13Z als unterkörper von [mm] \IC [/mm] aufgefasst werden,d.h. gibt es einen injek-
tiven ringhomomorphismus von Z/13Z nach [mm] \IC [/mm]

hi
also was ich wikipedia an U-körperaxiomen entnehmen kann ist:
a,b [mm] \in [/mm] U [mm] \Rightarrow [/mm] a*b,a+b [mm] \in [/mm] U (abgeschlossenheit unter add. und mult.)
[mm] 1_{k},0_{k} \in [/mm] U (neutrale von K sind in U)
a [mm] \in [/mm] U [mm] \Rightarrow [/mm] -a [mm] \in [/mm] U (add. inv.)
a [mm] \in U\Rightarrow [/mm] a^-1 [mm] \in [/mm] U (mult. inv.)
demnach müßte nach meinem verständnis Z/13Z U-körper von C sein.
mein problem ist jetzt der injektive ringhomomorphismus,kann mir keinen vorstellen.
hätte vieleicht jemand ´ne idee oder kann mir ´nen tip geben wieso Z/13Z kein
U-körper von C ist.
gruß lenz

        
Bezug
Z/13Z unterkörper von C: Antwort
Status: (Antwort) fertig Status 
Datum: 15:35 Fr 14.12.2007
Autor: statler

Hi!

> kann Z/13Z als unterkörper von [mm]\IC[/mm] aufgefasst werden,d.h.
> gibt es einen injek-
>  tiven ringhomomorphismus von Z/13Z nach [mm]\IC[/mm]

>  mein problem ist jetzt der injektive
> ringhomomorphismus,kann mir keinen vorstellen.
>  hätte vieleicht jemand ´ne idee oder kann mir ´nen tip
> geben wieso Z/13Z kein
> U-körper von C ist.

Das Bild der 0 muß 0 sein und das Bild der 1 wieder 1, weil das die neutralen Elemente sind. Aber in Z/13Z ist 1+1+1+1+1+1+1+1+1+1+1+1+1 = 0, in [mm] \IC [/mm] aber = 13,
und das ergibt die Unmöglichkeit.

Gruß aus Harburg
Dieter

Bezug
                
Bezug
Z/13Z unterkörper von C: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:44 Fr 14.12.2007
Autor: lenz

jo,danke
so hatte ich mir das auch gedacht.
nur sind ja die U-körperaxiome erfüllt,oder kann man das neutrale
aus C nicht gleich dem neutralen aus Z/13Z setzen?
gruß lenz

Bezug
                        
Bezug
Z/13Z unterkörper von C: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 Fr 14.12.2007
Autor: leduart

Hallo
Du hast doch gar nicht die Unterkörperaxiome untersucht, sondern nur di Körperaxiome für Z/Z13!
Statler hat dir doch geschrieben warum es kein UK sein kann!
Gruss leduart

Bezug
                                
Bezug
Z/13Z unterkörper von C: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:13 Fr 14.12.2007
Autor: lenz

das liegt daran das ich in meinen eigentlich vollständigen
unterlagen keine unterkörperaxiome entdecken kann,und
bei wikipedia nur die oben angeführten aufgezählt sind,
die bis auf das die neutralen gleich den neutralen aus K sein müssen
gleich den körperaxiomen sind.ist also ein ringhomomorphismus aus U
nach K U-körperaxiom?gibt es noch weitere U-körperaxiome?
gruß lenz

Bezug
                                        
Bezug
Z/13Z unterkörper von C: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 Fr 14.12.2007
Autor: leduart

Hallo
Damit etwas ein Unterkörper ist, muss es Teil des Körpers sein, bzw eindeutig auf Elemente des Körpers abgebildet werden können. ausserdem muss es natürlich ein Körper sein: Si sind die rationalen Zahlen ein Unterkörper der reellen Zahlen, die reellen Zahlen ein Unterkörper der Komplexen Zahlen usw. die ganzen Zahlen aber kein Unterkörper der rationalen, weil sie kein Körper sind.
das Axiom mit dem neutralen Element macht hier die Zuordnung unmöglich.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]