www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Wurzelaufleiten
Wurzelaufleiten < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wurzelaufleiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:09 So 13.09.2009
Autor: blumich86

hallo zusammen,

kann mir jemand behilflich bei dieser aufgabe sein? wie kann ich diese funktion integrieren??

[mm] 2*\integral_{a}^{b}{\wurzel{(20-x^2)} dx} [/mm]

        
Bezug
Wurzelaufleiten: Antwort
Status: (Antwort) fertig Status 
Datum: 10:26 So 13.09.2009
Autor: rainerS

Hallo!

> hallo zusammen,
>  
> kann mir jemand behilflich bei dieser aufgabe sein? wie
> kann ich diese funktion integrieren??
>  
> [mm]2*\integral_{a}^{b}{\wurzel{(20-x^2)} dx}[/mm]  

Partielle Integration mit $u'=1$ und [mm] $v=\wurzel{20-x^2}$; [/mm] danach geschickte Umformung des Zählers, um auf eine Summe des ursprünglichen und eines bekannten Integrals zu kommen.

Viele Grüße
   Rainer

Bezug
                
Bezug
Wurzelaufleiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:52 So 13.09.2009
Autor: blumich86

hallo danke für deine schnelle hilfe, aber ich glaube ich habe da etwas falch gemacht bei der partiellen integration:

[mm] \integral_{a}^{b}{1*\wurzel{20-x^2)} dx}=\wurzel{(20-x^2)}*x-\integral_{a}^{b}{x*(1/2*(-2)/\wurzel{20-x^2))} dx}=(\wurzel{20-x^2}*x+\integral_{a}^{b}{x^2/(\wurzel{20-x^2} dx} [/mm]

ist das soweit richtig??

Bezug
                        
Bezug
Wurzelaufleiten: stimmt soweit
Status: (Antwort) fertig Status 
Datum: 10:54 So 13.09.2009
Autor: Loddar

Hallo blumich!


Zwischendurch ist Dir im Integral ein $x_$ abhanden gekommen, aber am Ende stimmt es.


Gruß
Loddar


Bezug
                                
Bezug
Wurzelaufleiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:12 So 13.09.2009
Autor: blumich86

mmhh eigentlich nicht, bin das nochmal durchgegangen und habe es so aufgeschrieben, wie ich es berechnet habe.
muss ich das jetz noch einmal partiell integrieren???
und muss ich dabei [mm] x^2=v' [/mm] und [mm] 1/\wurzel{20-^2)} [/mm] nehmen??

Bezug
                                        
Bezug
Wurzelaufleiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:19 So 13.09.2009
Autor: blumich86

ach das geht nicht, da kommt bei mir was total unsinniges raus ;((( ich brauche hiiiillllfeee

Bezug
                                        
Bezug
Wurzelaufleiten: Antwort
Status: (Antwort) fertig Status 
Datum: 11:23 So 13.09.2009
Autor: rainerS

Hallo!

> mmhh eigentlich nicht, bin das nochmal durchgegangen und
> habe es so aufgeschrieben, wie ich es berechnet habe.

In deinem Post fehlt ein x in der Ableitung der Wurzel.

>  muss ich das jetz noch einmal partiell integrieren???
>  und muss ich dabei [mm]x^2=v'[/mm] und [mm]1/\wurzel{20-^2)}[/mm] nehmen??

Wie ich dir schon geschreiben habe, musst du den Zähler im verbliebenen Integral erweitern: [mm] $x^2=x^2-20+20$, [/mm] auseinanderziehen und dann kürzen.

Viele Grüße
   Rainer



Bezug
                                                
Bezug
Wurzelaufleiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:37 So 13.09.2009
Autor: blumich86

mein ergebnis kann man nicht erweitern, da muss doch was falsch sein,

[mm] \integral_{a}^{b}{x^2/(\wurzel(20-x^2)) dx} [/mm]

Bezug
                                                        
Bezug
Wurzelaufleiten: genau lesen
Status: (Antwort) fertig Status 
Datum: 11:40 So 13.09.2009
Autor: Loddar

Hallo blumich!


Du musst schon genau lesen, was Rainer schreibt:
[mm] $$\bruch{x^2}{\wurzel{20-x^2}} [/mm] \ = \ [mm] \bruch{x^2 \ \blue{-20+20}}{\wurzel{20-x^2}} [/mm] \ = \ [mm] \bruch{x^2-20}{\wurzel{20-x^2}}+\bruch{20}{\wurzel{20-x^2}} [/mm] \ = \ [mm] -\bruch{20-x^2}{\wurzel{20-x^2}}+\bruch{20}{\wurzel{20-x^2}}$$ [/mm]
Nun kann man im ersten Bruch kürzen und anschließend beide Brüche separat integrieren.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]