www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Wurzel umformen
Wurzel umformen < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wurzel umformen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Sa 04.04.2009
Autor: itse

Aufgabe
Wurzel umformen: Zeigen Sie:

[mm] \wurzel{\wurzel{a} \pm \wurzel{b}} [/mm] = [mm] \wurzel{\bruch{\wurzel{a}+ \wurzel{a-b}}{2}} \pm \wurzel{\bruch{\wurzel{a}- \wurzel{a-b}}{2}} [/mm]

Hallo Zusammen,

ich habe probiert den Anfangsterm entsprechend zu erweitern:

[mm] \wurzel{\wurzel{a} \pm \wurzel{b}} \cdot{} \wurzel{a-b} [/mm] = [mm] \wurzel{\wurzel{a} \cdot{} (a-b) \pm \wurzel{b} \cdot{} (a-b)} [/mm] = [mm] \wurzel{\wurzel{a}a- \wurzel{a}b \pm \wurzel{b}a - \wurzel{b}b} [/mm]

und dann noch mit dem Endterm:

[mm] \wurzel{\bruch{\wurzel{a}+ \wurzel{a-b}}{2}} \pm \wurzel{\bruch{\wurzel{a}- \wurzel{a-b}}{2}} [/mm] = [mm] \bruch{\wurzel{\wurzel{a} + \wurzel{a-b}} \pm \wurzel{\wurzel{a}- \wurzel{a-b}}}{\wurzel{2}} [/mm]

Nur komme ich dann nicht mehr weiter, wegen dem Plus/Minus-Zeichen. Wie kann ich dies Erweitern, damit das entsprechende wegfällt?

Gruß
itse

        
Bezug
Wurzel umformen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:01 Sa 04.04.2009
Autor: Al-Chwarizmi


> [mm]\wurzel{\wurzel{a} \pm \wurzel{b}}[/mm] =
> [mm]\wurzel{\bruch{\wurzel{a}+ \wurzel{a-b}}{2}} \pm \wurzel{\bruch{\wurzel{a}- \wurzel{a-b}}{2}}[/mm]


Guten Abend,

Zuerst: deine Umformungen verstehe ich nicht.

Ich glaube, man sollte da zuerst einmal nur den einen
von zwei möglichen (Vorzeichen-) Fällen untersuchen.
Um alle die Wurzeln loszuwerden, wird man nicht darum
herum kommen, mehr als einmal zu quadrieren. Dabei
muss man natürlich auch mit den Vorzeichen sorgfältig
umgehen.

LG

Bezug
                
Bezug
Wurzel umformen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:17 Sa 04.04.2009
Autor: itse

Hallo,

dann bin ich wohl vollkommen falsch an die Sache herangegangen, nun gut auf ein Neues. Ich entscheide mich als erste für den positiven Fall:

[mm] \wurzel{\wurzel{a} + \wurzel{b}} [/mm] = [mm] \wurzel{\bruch{\wurzel{a}+ \wurzel{a-b}}{2}} [/mm] + [mm] \wurzel{\bruch{\wurzel{a}- \wurzel{a-b}}{2}} [/mm]

[mm] \wurzel{\wurzel{a} + \wurzel{b}} [/mm] = [mm] \bruch{\wurzel{\wurzel{a}+ \wurzel{a-b}}}{\wurzel{2}} [/mm] + [mm] \bruch{\wurzel{\wurzel{a}- \wurzel{a-b}}}{\wurzel{2}} [/mm]

[mm] \wurzel{2} \cdot{} \wurzel{\wurzel{a} + \wurzel{b}} [/mm] = [mm] \wurzel{\wurzel{a}+ \wurzel{a-b}} [/mm] + [mm] \wurzel{\wurzel{a}- \wurzel{a-b}} [/mm]

[mm] \wurzel{2 \wurzel{a}+ 2 \wurzel{b}} [/mm] = [mm] \wurzel{\wurzel{a}+ \wurzel{a-b}} [/mm] + [mm] \wurzel{\wurzel{a}- \wurzel{a-b}} [/mm]

[mm] [\wurzel{2 \wurzel{a}+ 2 \wurzel{b}}]² [/mm] = [mm] [\wurzel{\wurzel{a}+ \wurzel{a-b}} [/mm] + [mm] \wurzel{\wurzel{a}- \wurzel{a-b}}]² [/mm]

[mm] 2\wurzel{a}+2\wurzel{b} [/mm] = [mm] \wurzel{a}+\wurzel{a-b}+2\wurzel{(\wurzel{a}+ \wurzel{a-b})(\wurzel{a}- \wurzel{a-b})}+\wurzel{a}- \wurzel{a-b} [/mm]

[mm] 2\wurzel{a}+2\wurzel{b} [/mm] = [mm] 2\wurzel{a}+2\wurzel{a-(a-b)} [/mm]

[mm] 2\wurzel{a}+2\wurzel{b} [/mm] = [mm] 2\wurzel{a}+2\wurzel{b} [/mm]

0 = 0 (wahre Aussage)

Der negative müsste genauso gehen. Musste man dies so zeigen? Oder habe ich etwas falsch gemacht?

Gruß
itse

Bezug
                        
Bezug
Wurzel umformen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:00 Sa 04.04.2009
Autor: MathePower

Hallo itse,

> Hallo,
>  
> dann bin ich wohl vollkommen falsch an die Sache
> herangegangen, nun gut auf ein Neues. Ich entscheide mich
> als erste für den positiven Fall:
>  
> [mm]\wurzel{\wurzel{a} + \wurzel{b}}[/mm] =
> [mm]\wurzel{\bruch{\wurzel{a}+ \wurzel{a-b}}{2}}[/mm] +
> [mm]\wurzel{\bruch{\wurzel{a}- \wurzel{a-b}}{2}}[/mm]
>  
> [mm]\wurzel{\wurzel{a} + \wurzel{b}}[/mm] =
> [mm]\bruch{\wurzel{\wurzel{a}+ \wurzel{a-b}}}{\wurzel{2}}[/mm] +
> [mm]\bruch{\wurzel{\wurzel{a}- \wurzel{a-b}}}{\wurzel{2}}[/mm]
>  
> [mm]\wurzel{2} \cdot{} \wurzel{\wurzel{a} + \wurzel{b}}[/mm] =
> [mm]\wurzel{\wurzel{a}+ \wurzel{a-b}}[/mm] + [mm]\wurzel{\wurzel{a}- \wurzel{a-b}}[/mm]
>  
> [mm]\wurzel{2 \wurzel{a}+ 2 \wurzel{b}}[/mm] = [mm]\wurzel{\wurzel{a}+ \wurzel{a-b}}[/mm]
> + [mm]\wurzel{\wurzel{a}- \wurzel{a-b}}[/mm]
>  
> [mm][\wurzel{2 \wurzel{a}+ 2 \wurzel{b}}]²[/mm] =
> [mm][\wurzel{\wurzel{a}+ \wurzel{a-b}}[/mm] + [mm]\wurzel{\wurzel{a}- \wurzel{a-b}}]²[/mm]
>  
> [mm]2\wurzel{a}+2\wurzel{b}[/mm] =
> [mm]\wurzel{a}+\wurzel{a-b}+2\wurzel{(\wurzel{a}+ \wurzel{a-b})(\wurzel{a}- \wurzel{a-b})}+\wurzel{a}- \wurzel{a-b}[/mm]
>  
> [mm]2\wurzel{a}+2\wurzel{b}[/mm] = [mm]2\wurzel{a}+2\wurzel{a-(a-b)}[/mm]
>  
> [mm]2\wurzel{a}+2\wurzel{b}[/mm] = [mm]2\wurzel{a}+2\wurzel{b}[/mm]
>  
> 0 = 0 (wahre Aussage)
>  
> Der negative müsste genauso gehen. Musste man dies so
> zeigen? Oder habe ich etwas falsch gemacht?


Alles richtig. Der negative geht analog.


>  
> Gruß
>  itse


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]