www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Wurzel
Wurzel < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wurzel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:28 Di 09.03.2010
Autor: Zaibatsi

Aufgabe
y = [mm] \bruch{x^{3}}{\wurzel[3]{3x^{2}-1}} [/mm]

u(x) = [mm] x^{3} [/mm]
v(x) = [mm] \wurzel[3]{3x^{2}-1} [/mm]

u'(x) = [mm] 3x^{2} [/mm]
v'(x) = [mm] \bruch{1}{3} [/mm] * [mm] (3x^{2}-1)^{\bruch{-1}{3}} [/mm] ??

Ist das so richtig?

Wenn ich dann die Quotientenregel nutze, wie soll ich das dann im Kopf rechnen...? Ich glaube ich hab hier irgendetwas falsch gemacht...

        
Bezug
Wurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 15:46 Di 09.03.2010
Autor: metalschulze


> y = [mm]\bruch{x^{3}}{\wurzel[3]{3x^{2}-1}}[/mm]

Die Aufgabe ist es also abzuleiten? Kannst du ruhig mit dazu schreiben ;-)

> u(x) = [mm]x^{3}[/mm]
>  v(x) = [mm]\wurzel[3]{3x^{2}-1}[/mm]
>  
> u'(x) = [mm]3x^{2}[/mm] [ok]
>  v'(x) = [mm]\bruch{1}{3}[/mm] * [mm](3x^{2}-1)^{\bruch{-1} {3}}[/mm] ?? [notok]

forme erst um: v(x) = [mm] (3x^2 [/mm] - [mm] 1)^{\bruch{1}{3}} [/mm] das hast du ja im Kopf gemacht oder? Dann die Kettenregel anwenden. Erst äussere Ableitung, da ist der neue Exponent falsch [mm] \bruch{1}{3} [/mm] - 1 = ?
Dann mit der inneren Ableitung multiplizieren...

> Ist das so richtig?

nein

>  
> Wenn ich dann die Quotientenregel nutze, wie soll ich das
> dann im Kopf rechnen...? Ich glaube ich hab hier
> irgendetwas falsch gemacht...

musst du doch nicht im Kopf machen, schreib dir im Zweifel jeden Teilschritt auf
Gruss Christian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]