www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Würfel
Würfel < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Würfel: Frage
Status: (Frage) beantwortet Status 
Datum: 11:38 Mo 27.06.2005
Autor: zlata

Hallo!

Für einen gezinkten Würfel ergibt sich folgende Wahrscheinlichkeitsverteilung

[mm] x_{i} [/mm]              P(X= [mm] x_{i}) [/mm]

1                            0,1
2                            0,05
3                            0,2
4                            0,25
5                            0,1
6                            0,3


Wenn ich nun rechne:

1*0,1+2*0,05+3*0,2+4*0,25+5*0,1+6*0,3=4,1


Als was kann ich die 4,1 interpretieren!

Danke für eure Bemühungen

Zlata  

        
Bezug
Würfel: ? ? ? Unklar bzw. kein Sinn!
Status: (Antwort) fertig Status 
Datum: 11:58 Mo 27.06.2005
Autor: Roadrunner

Hallo Zlata!


> Wenn ich nun rechne:
>  
> 1*0,1+2*0,05+3*0,2+4*0,25+5*0,1+6*0,3=4,1
>  
> Als was kann ich die 4,1 interpretieren!

[verwirrt] Was möchtest (bzw. sollst) Du denn hier berechnen?


Meines Erachtens gibt es keinerlei Sinn, wenn Du die Ereignisse (bzw. deren Bezeichnung) mit den zugehörigen Wahrscheinlichkeiten multiplizierst.


Was hättest Du denn gerechnet, wenn auf den sechs Würfelseiten nun sechs Buchstaben stünden: [mm] $x_i [/mm] \ = \ [mm] \{A, B, C, D, E, F \}$ [/mm]  ?

Oder noch mehr auf die Spitze getrieben:
[mm] $x_i [/mm] \ = \ [mm] \{\text{Auto, Kochtopf, Blume, Sonne, Roadrunner, Zelt} \}$ [/mm]

Du siehst: hier wäre eine derartige Rechnung also gar nicht möglich ...


Gruß vom
Roadrunner


Bezug
        
Bezug
Würfel: weitere Antwort
Status: (Antwort) fertig Status 
Datum: 12:09 Mo 27.06.2005
Autor: Zwerglein

Hi, Zlata,

> Wenn ich nun rechne:
>  
> 1*0,1+2*0,05+3*0,2+4*0,25+5*0,1+6*0,3=4,1
>  
> Als was kann ich die 4,1 interpretieren!

Damit hast Du den "Erwartungswert"
(manchmal auch einfach "Durchschnitt" oder "Mittel" genannt)
berechnet.
Der Erwartungswert wird meist mit E(X) oder auch [mm] \mu [/mm] abgekürzt.

Nehmen wir an, Du wirfst diesen Würfel 1000 mal.
Dann kannst Du "erwarten", dass Du - alle 1000 Ergebnisse addiert -
etwa 4100 (=4,1*1000) als Augensumme erhältst.
Bei einem nicht-gezinkten Würfel  wäre [mm] \mu [/mm] = 3,5
und daher die Augensumme beim 1000-maligen Werfen nur "um 3500 herum".

War's das in etwa, was Du wissen wolltest?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]