www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Ws-Dichten
Ws-Dichten < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ws-Dichten: Ws-Dichten Frage dazu
Status: (Frage) beantwortet Status 
Datum: 22:51 Fr 06.03.2009
Autor: svenchen

Hallo, ich habe eine Frage zu einer Aufgabe:

f(x) = [mm] \bruch{c}{1+x^{2}} [/mm]

a) Bestimmen Sie c so, daß f Ws-Dichte wird.

Ich habe mir überlegt, dass ja

[mm] \integral_{}^{}{ \bruch{c}{1+x^{2}} dx} [/mm] = 1 gelten muss.

Also habe ich angefangen:


[mm] \integral_{-\infty}^{\infty}{ \bruch{c}{1+x^{2}} dx} [/mm] = 1

c [mm] *\integral_{-\infty}^{\infty}{ \bruch{1}{1+x^{2}} dx} [/mm] = 1

c * [mm] \limes_{n\rightarrow\infty} [/mm] arctan(n)  - [mm] \limes_{n\rightarrow - \infty} [/mm] arctan(n) = 1

c * [mm] \bruch{pi}{2} [/mm]  = 1

c = [mm] \bruch{2}{pi} [/mm]

Ist das Ergebnis so richtig, oder wenn nicht, was habe ich falsch gemacht ?

Schönen dank ;)



        
Bezug
Ws-Dichten: Antwort
Status: (Antwort) fertig Status 
Datum: 23:02 Fr 06.03.2009
Autor: MathePower

Hallo svenchen,

> Hallo, ich habe eine Frage zu einer Aufgabe:
>  
> f(x) = [mm]\bruch{c}{1+x^{2}}[/mm]
>  
> a) Bestimmen Sie c so, daß f Ws-Dichte wird.
>
> Ich habe mir überlegt, dass ja
>
> [mm]\integral_{}^{}{ \bruch{c}{1+x^{2}} dx}[/mm] = 1 gelten muss.
>  
> Also habe ich angefangen:
>  
>
> [mm]\integral_{-\infty}^{\infty}{ \bruch{c}{1+x^{2}} dx}[/mm] = 1
>  
> c [mm]*\integral_{-\infty}^{\infty}{ \bruch{1}{1+x^{2}} dx}[/mm] =
> 1
>  
> c * [mm]\limes_{n\rightarrow\infty}[/mm] arctan(n)  -
> [mm]\limes_{n\rightarrow - \infty}[/mm] arctan(n) = 1
>  
> c * [mm]\bruch{pi}{2}[/mm]  = 1
>  
> c = [mm]\bruch{2}{pi}[/mm]


Das ist richtig, wenn sich das Intervall auf [mm]\left[0, \infty[[/mm] erstreckt.

Hier erstreckt sich das Intervall auf [mm]\left]-\infty, +\infty[[/mm].

Damit ergibt sich [mm]c=\bruch{1}{\pi}[/mm]


>  
> Ist das Ergebnis so richtig, oder wenn nicht, was habe ich
> falsch gemacht
>  
> Schönen dank ;)
>  
>  


Gruß
MathePower

Bezug
                
Bezug
Ws-Dichten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:33 Fr 06.03.2009
Autor: svenchen

Hi, danke für Deine Antwort.
Ich weiß grad leider irgendwie nicht, wo genau mein Fehler liegt.
Ich habe als Grenzen doch [mm] \infty [/mm] und [mm] -\infty [/mm] genommen.


Bezug
                        
Bezug
Ws-Dichten: Minuszeichen
Status: (Antwort) fertig Status 
Datum: 09:58 Sa 07.03.2009
Autor: Infinit

Hallo svenchen,
die Grenzen sind schon okay, aber beim Einsetzen ging was schief:
$$ c ( [mm] \cdot \arctan (\infty) [/mm] - [mm] \arctan (-\infty)) [/mm] = c [mm] \cdot [/mm] ( [mm] \bruch{\pi}{2} [/mm] - (- [mm] \bruch{\pi}{2})) [/mm] = c [mm] \cdot \pi [/mm] $$

Jetzt siehst Du Deinen Fehler, nehme ich mal an.
Viele Grüße,
Infinit

Bezug
        
Bezug
Ws-Dichten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:57 Sa 07.03.2009
Autor: svenchen

Ja, jetzt ist's klar, danke euch beiden!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]