www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Winkelmessung bei Ebenen
Winkelmessung bei Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Winkelmessung bei Ebenen: Winkel zw. Ebenen und Geraden
Status: (Frage) beantwortet Status 
Datum: 19:15 Do 01.09.2005
Autor: MarenWulf

Hallo ihr Lieben!
Ich habe folgende Aufgabe zu rechnen:
Wo und unter welchem Winkel durchstößt die Gerade [mm] g:\vec{x}= \vektor{2\\-1\\2}+k*\vektor{1\\2\\-3} [/mm] die x-y-Ebene?

Dazu habe ich mir schon folgende Gedanken gemacht:
Zum Erstellen der Ebenengleichung nehme ich mir den Punkt (0/0/0) als Hinführvektor und wähle als einen Richtungsvektor einen Vektor,der nur in x-Richtung geht und als anderen Richtungsvektor einen Vektor,der nur in y-Richtung geht, dann erhalte ich die Ebenengleichung:
[mm] E:\vec{x}= \vektor{0\\ 0\\0}+l* \vektor{1\\0\\0}+m* \vektor{0\\1\\0} [/mm]
Um den Surchstoßpumkt zu erhalten, setze ich die Ebenengleichung und die Geradengleichung gleich. Wenn ich k,l und m errechnet habe, setze ich die Ergebnisse in die jeweilige Gleichung ein und erhalte den Durchstoßpunkt [mm] S(\bruch{8}{3}/\bruch{1}{3}/0) [/mm]
Um den Winkel zwischen einer Geraden und einer Ebene zu berechnen, benötige ich den Sinus und somit die Gleichung:
sin [mm] \alpha= \vmat{\vec{n}*\vec{u}durch|\vec{n}|*|\vec{u}|}, [/mm] wobei Vektor [mm] \vec{n} [/mm] der Normalenvektor der Ebene ist und Vektor [mm] \vec{u} [/mm] der Richtungsvektor der Geraden ist.
Mein Problem ist nun, dass ich aus meiner oben aufgestellten Ebenengleichung keinen Normalenvektor herausbekomme. Bitte helft mir weiter! Habe ich bis hierhin wenigstens alles richtig gemacht oder ist mein Ansatz schon falsch? Und wenn es richtig sein sollte, wie müsste mein Normalenvektor lauten?
Vielen Dank im Voraus für die Hilfe!
Eure Maren




        
Bezug
Winkelmessung bei Ebenen: Normalenvektor
Status: (Antwort) fertig Status 
Datum: 19:42 Do 01.09.2005
Autor: MathePower

Hallo MarenWulf,

[willkommenmr]

> Mein Problem ist nun, dass ich aus meiner oben
> aufgestellten Ebenengleichung keinen Normalenvektor
> herausbekomme. Bitte helft mir weiter! Habe ich bis hierhin
> wenigstens alles richtig gemacht oder ist mein Ansatz schon
> falsch? Und wenn es richtig sein sollte, wie müsste mein
> Normalenvektor lauten?

Der Normalenvektor muß hier lauten:

[mm]\overrightarrow n \; = \;\left( {\begin{array}{*{20}c} 0 \\ 0 \\ 1 \\ \end{array} } \right)[/mm]

Ist eine Ebene in Parameterdarstellung gegeben

[mm]E:\;\overrightarrow x \; = \;\overrightarrow p \; + \;s\;\overrightarrow a \; + \;t\;\overrightarrow b [/mm]

so errechnet sich der Normalenvektor wie folgt:

[mm] \overrightarrow n \; = \;\overrightarrow a \; \times \;\overrightarrow b \; = \;\left( {\begin{array}{*{20}c} {a_1 } \\ {a_2 } \\ {a_3 } \\ \end{array} } \right)\; \times \;\left( {\begin{array}{*{20}c} {b_1 } \\ {b_2 } \\ {b_3 } \\ \end{array} } \right)\; = \;\left( {\begin{array}{*{20}c} {a_2 \;b_3 \; - \;a_3 \;b_2 } \\ {a_3 \;b_1 \; - \;a_1 \;b_3 } \\ {a_1 \;b_2 \; - \;a_2 \;b_1 } \\ \end{array} } \right)[/mm]

Gruß
MathePower

Bezug
                
Bezug
Winkelmessung bei Ebenen: Rückfrage:Normalenvektor
Status: (Frage) beantwortet Status 
Datum: 20:27 Fr 02.09.2005
Autor: MarenWulf

Meine aufgestellten Richtungsvektoren (siehe ersten Beitrag) der Ebene sind [mm] \vektor{1\\0\\0} [/mm] und [mm] \vektor{0\\1\\0}. [/mm] Wie erhält man daraus deinen Normalenvektor [mm] \vec{n}= \vektor{0\\0\\1}? [/mm] Waren meine vorherigen Berechnungen denn überhaupt richtig?
Vielen Dank im Voraus!
Maren

Bezug
                        
Bezug
Winkelmessung bei Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:54 Fr 02.09.2005
Autor: MathePower

Hallo MarenWulf.

> Meine aufgestellten Richtungsvektoren (siehe ersten
> Beitrag) der Ebene sind [mm]\vektor{1\\0\\0}[/mm] und
> [mm]\vektor{0\\1\\0}.[/mm] Wie erhält man daraus deinen
> Normalenvektor [mm]\vec{n}= \vektor{0\\0\\1}?[/mm] Waren meine
> vorherigen Berechnungen denn überhaupt richtig?

[ok]

So erhält man den Normalenvektor:

[mm] \overrightarrow n \; = \;\left( {\begin{array}{*{20}c} 1 \\ 0 \\ 0 \\ \end{array} } \right)\; \times \;\left( {\begin{array}{*{20}c} 0 \\ 1 \\ 0 \\ \end{array} } \right)\; = \;\left( {\begin{array}{*{20}c} {0\; \bullet \;0\; - \;0\; \bullet \;1} \\ {0\; \bullet \;0\; - \;1\; \bullet \;0} \\ {1\; \bullet \;1\; - \;0\; \bullet \;0} \\ \end{array} } \right)\; = \;\left( {\begin{array}{*{20}c} 0 \\ 0 \\ 1 \\ \end{array} } \right)[/mm]

Dies ist das sogenannte Vektorprodukt. Hier wird zu zwei gegebenen Vektoren ein dritter orthogonaler Vektor gebildet.

Die ganze Umrechnung hättest Du dir sparen können, denn den Normalenvektor erkennt man aus der Koordinatendarstellung der Ebene:

[mm] \begin{gathered} z\; = \;0 \hfill \\ \Leftrightarrow \;0\;x\; + \;0\;y\; + \;1\;z\; = \;0 \hfill \\ \end{gathered} [/mm]

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]