www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Winkelbestimmung Umrechenprob.
Winkelbestimmung Umrechenprob. < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Winkelbestimmung Umrechenprob.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:02 Mo 03.07.2006
Autor: hase-hh

Aufgabe
1. Im rechtwinkligen Dreieck ABC mit c als Hypotenuse sind gegeben: a=2,2 cm, b= 5cm; gesucht:  [mm] \alpha, \beta [/mm]

2. Im Dreieck ABC sind drei Seiten gegeben. Berechne die Winkel in der genannten Reihenfolge.

gegeben: a= 4 cm, b= 5 cm, c= 6 cm
gesucht: [mm] \alpha, \beta,\gamma [/mm]

Moin,

1) Ich berechne also: tan [mm] \alpha [/mm] =  [mm] \bruch{2,2}{5} [/mm] = 0,44.

Mit dem Taschenrechner  [mm] tan^{-1} [/mm] erhalte ich [mm] \alpha [/mm] = 23,7°.

Wie berechne ich das aber jetzt ohne Taschenrechner.

0,44 ist doch das Bogenmaß (RAD), das ich in Grad (DEG) umrechnen kann mit 180 / [mm] \pi, [/mm] also:


(0,44 * 180) / [mm] \pi [/mm]


ich bekomme aber dann ca. 25° heraus.


stimmt das überhaupt?


2) Noch fragwürdiger wird es hier.

Cosinussatz:  [mm] a^2 [/mm] = [mm] b^2 [/mm] + [mm] c^2 [/mm] - 2bc*cos [mm] \alpha [/mm]

[mm] 4^2 [/mm] = [mm] 5^2 [/mm] + [mm] 6^2 [/mm] - 2*5*6* cos [mm] \alpha [/mm]

60 cos [mm] \alpha [/mm] = 45

cos \ alpha = 0,75

Mit Taschenrechner [mm] cos^{-1} [/mm] ist [mm] \alpha [/mm]  = 41,4°

mit 0,75*180 / [mm] \pi [/mm] ist [mm] \alpha [/mm] = 43°.


[mm] b^2 [/mm] = [mm] a^2 [/mm] + [mm] c^2 [/mm] - 2ac*cos [mm] \beta [/mm]

25 = 16+36 - 48 cos [mm] \beta [/mm]

cos [mm] \beta [/mm] = 0,5625

Mit Taschenrechner [mm] cos^{-1} [/mm] ist [mm] \beta [/mm]  = 55,8°

mit 0,5625*180 / [mm] \pi [/mm] ist [mm] \beta [/mm] = 32,2°.


=>???

gruss
wolfgang












        
Bezug
Winkelbestimmung Umrechenprob.: Nur zur Umrechnung
Status: (Antwort) fertig Status 
Datum: 10:53 Mo 03.07.2006
Autor: Disap


> 1. Im rechtwinkligen Dreieck ABC mit c als Hypotenuse sind
> gegeben: a=2,2 cm, b= 5cm; gesucht:  [mm]\alpha, \beta[/mm]
>  
> 2. Im Dreieck ABC sind drei Seiten gegeben. Berechne die
> Winkel in der genannten Reihenfolge.
>  
> gegeben: a= 4 cm, b= 5 cm, c= 6 cm
>  gesucht: [mm]\alpha, \beta,\gamma[/mm]
>  Moin,

Hallo.

> 1) Ich berechne also: tan [mm]\alpha[/mm] =  [mm]\bruch{2,2}{5}[/mm] = 0,44.
>  
> Mit dem Taschenrechner  [mm]tan^{-1}[/mm] erhalte ich [mm]\alpha[/mm] =
> 23,7°.
>  
> Wie berechne ich das aber jetzt ohne Taschenrechner.
>
> 0,44 ist doch das Bogenmaß (RAD), das ich in Grad (DEG)
> umrechnen kann mit 180 / [mm]\pi,[/mm] also:
>  
>
> (0,44 * 180) / [mm]\pi[/mm]
>  
>
> ich bekomme aber dann ca. 25° heraus.
>  
>
> stimmt das überhaupt?

Natürlich nicht. Oder wie erklärst du dir, dass zwei unterschiedliche Ergebnisse herauskommen?

Stellen wir uns einmal die Tangensfunktion vor. Hast du den Ausdruck

[mm] tan(\alpha)=0.44 [/mm] dann fragst du dich, bei welchem Winkel (wenn wir die X-Achse sozusagen mit Winkel beschriften) ist der Tangens 0.44 hoch (Y-Wert).

[mm] $\alpha [/mm] = atan(0.44) [mm] \approx23.75°$ [/mm]

Das 0.44 kannst du nicht in eine Gradzahl umwandeln.  

Was du in das Bogenmass umwandeln kannst, ist allerdings das Ergebnis 23.75°. Das wandelt man um, indem durch [mm] $\br{23.75°*\pi}{180°}=0.4145$ [/mm]

So ist auch im Bogenmass der [mm] atan(0.44)\approx0.4145 [/mm]

Mit [mm] \br{180}{\pi} [/mm] wandelt man das Ergebnis wieder in Grad um.

> Wie berechne ich das aber jetzt ohne Taschenrechner.

Den atan von 0.44 berechnen? [idee] Reihenentwicklung. Aber du meintest wohl etwas anderes.

MfG!
Disap

Bezug
                
Bezug
Winkelbestimmung Umrechenprob.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mo 03.07.2006
Autor: hase-hh

Hallo,

bleiben wir mal bei tan [mm] \alpha [/mm] = 0,44. wie bzw. nach welcher formel kann man den winkel berechnen?





Bezug
                        
Bezug
Winkelbestimmung Umrechenprob.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:46 Mo 03.07.2006
Autor: Herby

Hallo Wolfgang,


wenn [mm] tan(\alpha)=0,44 [/mm] ist, dann ist [mm] \alpha=tan^{-1}(0,44)=arctan(0,44) [/mm] und somit [mm] \alpha=0,41 [/mm] (in RAD)

wenn [mm] tan(\alpha)=0,44 [/mm] ist, dann ist [mm] \alpha=tan^{-1}(0,44)=arctan(0,44) [/mm] und somit [mm] \alpha=23,74 [/mm] (in DEG)

war es das, was du wissen wolltest?


Liebe Grüße
Herby [Dateianhang nicht öffentlich]

Bezug
        
Bezug
Winkelbestimmung Umrechenprob.: Antwort
Status: (Antwort) fertig Status 
Datum: 13:03 Mo 03.07.2006
Autor: Herby

Hallo Wolfgang,

du verwendest in beiden Fällen das Argument der Winkelfunktionen nicht richtig.

> 1. Im rechtwinkligen Dreieck ABC mit c als Hypotenuse sind
> gegeben: a=2,2 cm, b= 5cm; gesucht:  [mm]\alpha, \beta[/mm]
>  
> 2. Im Dreieck ABC sind drei Seiten gegeben. Berechne die
> Winkel in der genannten Reihenfolge.
>  
> gegeben: a= 4 cm, b= 5 cm, c= 6 cm
>  gesucht: [mm]\alpha, \beta,\gamma[/mm]
>  Moin,
>  
> 1) Ich berechne also: tan [mm]\alpha[/mm] =  [mm]\bruch{2,2}{5}[/mm] = 0,44.
>  
> Mit dem Taschenrechner  [mm]tan^{-1}[/mm] erhalte ich [mm]\alpha[/mm] =
> 23,7°.
>  
> Wie berechne ich das aber jetzt ohne Taschenrechner.
>
> 0,44 ist doch das Bogenmaß (RAD), das ich in Grad (DEG)
> umrechnen kann mit 180 / [mm]\pi,[/mm] also:
>  
>
> (0,44 * 180) / [mm]\pi[/mm]
>  
>
> ich bekomme aber dann ca. 25° heraus.
>  

du sagts hier, dass [mm] tan(\alpha)=\alpha [/mm] sei und das stimmt nicht.

[mm] tan(\alpha)=0,44 [/mm] und [mm] \alpha=tan^{-1}(0,44)=0,41 [/mm]

bei einem Winkel ist nur [mm] \alpha [/mm] gemeint und nicht [mm] tan(\alpha) [/mm] -- deshalb ist auch [mm] 0,44*\bruch{180°}{\pi}=25,21°\not=23,74°*\bruch{\pi}{180°}=0,41=\alpha [/mm]

und die andere geht analog :-)



Liebe Grüße
Herby [Dateianhang nicht öffentlich]

Bezug
                
Bezug
Winkelbestimmung Umrechenprob.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:58 Di 04.07.2006
Autor: hase-hh

moin herby,

ja, vielen dank! das hilft mir weiter! durch deine beiträge bin ich noch auf die idee gekommen, mir via wikipedia etwas über arkus-funktionen herauszusuchen.

:-)
liebe grüße
wolfgang

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]