www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Winkel komplexe Zahlen
Winkel komplexe Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Winkel komplexe Zahlen: Tipp Idee
Status: (Frage) überfällig Status 
Datum: 12:04 So 08.11.2009
Autor: together

Seien u, v, w drei verschiedene komplexe Zahlen.
1. Es sei [mm] \phi [/mm] der Winkel, den man erhält, wenn man u, v und w in ein Koordinatensystem einzeichnet und die VErbindungsstrecke von v nach u als ersten Schenkel und die von v nach w als zweiten Schenkel wählt.
Es gibt hierzu 2 Skizzen mit:
1: u=(2+i), v=(-1-i) und w=-1,5+2,5i)
2: u=(4,5+i), v=(3-2i), und w=(5-2,5i)
Zeigen Sie, dass gilt:
[mm] \phi= [/mm] Arg [mm] (\bruch{w-v}{u-v}) [/mm]

2. Seien [mm] \alpha, \beta \in \IC [/mm] mit [mm] \alpha \not=0 [/mm] und sei [mm] f(x)=\alphaz+\beta. [/mm] Zeigen Sie, dass f die WInkel enthält, dass also für alle u, v, w mit [mm] u\not=v\not=w [/mm] gilt: Arg [mm] (\bruch{w-v}{u-v})=Arg (\bruch{f(w)-f(v)}{f(u)-f(v)}) [/mm]

Hallo zusammen,

leider stehe ich hier total auf dem Schlauch...
Muss ich für die Aufgabe einfach die Werte für u, v und w einsetzen?

Ich wäre für Tipps und Anregungen dankbar.

Ich habe diese Frage in keinem anderen Forum gestellt.

VG
together


Kann mir hier keiner helfen?
Ich bin für jeden Tipp dankbar.

VG
together

        
Bezug
Winkel komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:43 Di 10.11.2009
Autor: together

Muss ich hier den Winkel ausrechnen (mit arctan o. ä.)?
Wäre echt super, wenn mir jemand einen Ansatz geben könnte!

VG
together

Bezug
                
Bezug
Winkel komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:18 Di 10.11.2009
Autor: leduart

Hallo
1. Hast du den Winkel eingezeichnet.
weisst du, dass Arg(z) der Winkel von z zur reellen Achse ist? weisst du, was bei Division von 2 Zahlen mit dem Arg passiert. Das zusammengenommen ist die Antwort.
Also arg(z1)= [mm] \alpha arg(z2)=\beta [/mm] arg(z1/z2)=7alpha [mm] -\beta. [/mm]
sehen und zeigen kann man as an schnellsten wenn man [mm] z=r*e^{i\alpha} [/mm] schreibt.
Gruss leduart

Bezug
                        
Bezug
Winkel komplexe Zahlen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:33 Fr 13.11.2009
Autor: together

Vielen Dank für Deine Hinweise!

Bezug
        
Bezug
Winkel komplexe Zahlen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Di 10.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]