www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Winkel + Mittelpunkt
Winkel + Mittelpunkt < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Winkel + Mittelpunkt: Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:48 So 12.08.2007
Autor: Maraike89

Aufgabe
a) Gegeben sind die Punkte A = (0, -1, 3); B = (6, 5, -2); C = (1, -2, 3).
Zeigen Sie, dass [mm] \overrightarrow{AB} \perp \overrightarrow{AC} [/mm]

b)Berechnen Sie den Mittelpunkt des Vektors  [mm] \overrightarrow{P1P2} [/mm] und ermitteln Sie den Betrag des Vektors [mm] \vec{s}, [/mm] der vom Koordinatenursprung zu diesem Mittelpunkt führt. P1 = (1, 1, 4);   P2 = (5, 3, 2)

zu a) Muss man zuerst die Vektoren per Addition zusammenrechnen, also [mm] \overrightarrow{AB} [/mm] = (6,4,1) und [mm] \overrightarrow{AC} [/mm] = (1,-3,6)

und dann mit Hilfe des Skalarprodukts den Winkel zwischen den Vektoren berechnen.

ab1*ac1+ab2*ac2+ab3*ac3 = 6 - 12 + 6 = 0 Bedingung [mm] \vec{a} \perp \vec{b} \Rightarrow \vec{a} [/mm] * [mm] \vec{b} [/mm] = 0 Erfüllt

Nur wie geht es dann hier weiter, muss doch 90 rauskommen?

cos [mm] \alpha [/mm] = [mm] \bruch{\vec{a} * \vec{b}}{|\vec{a}| * |\vec{b}|} [/mm]

zu b) Muss man hier per Addition zuerst die Strecke [mm] \vec{a} [/mm] + [mm] \vec{b} [/mm] ausrechnen, also  [mm] \overrightarrow{AB} [/mm] = (6,4,6) und dann mal 0,5 rechnen? Also  [mm] \overrightarrow{AB[M]} [/mm] = (3,2,3) ?

Betrag

P1 =  [mm] \wurzel{(1²,1²,4²)} [/mm] = 3 [mm] \wurzel{2} [/mm]
P1 =  [mm] \wurzel{(5², 3², 2²)} [/mm] = [mm] \wurzel{38} [/mm]

        
Bezug
Winkel + Mittelpunkt: Aufgabe a.)
Status: (Antwort) fertig Status 
Datum: 14:03 So 12.08.2007
Autor: Loddar

Hallo Maraike!


Du berechnest die beiden Vektoren [mm] $\overrightarrow{AB}$ [/mm] bzw. [mm] $\overrightarrow{AC}$ [/mm] falsch. Du musst die beiden Ortsvektoren subtrahieren:

[mm] $\overrightarrow{AB} [/mm] \ = \ [mm] \vec{b} [/mm] \ [mm] \re{-} [/mm] \ [mm] \vec{a} [/mm] \ = \ [mm] \vektor{6\\5\\-2}-\vektor{0\\-1\\3} [/mm] \ = \ ...$


Und wenn Du das MBSkalarprodukt mit dem Ergebnis = 0 ausgerechnet hast, beträgt der Winkel zwischen diesen beiden Vektoren auch wirklich $90°_$ . Schließlich gilt ja: [mm] $\cos(90°) [/mm] \ = \ 0$.

[mm] $\cos [/mm] 90° \ = \ 0 \ = \ [mm] \bruch{\vec{a} * \vec{b}}{|\vec{a}| * |\vec{b}|}$ $\gdw$ $\vec{a} [/mm] * [mm] \vec{b} [/mm] \ = \ 0$     [mm] $\gdw$ $\vec{a} [/mm] \ [mm] \perp [/mm] \ [mm] \vec{b}$ [/mm]


Gruß
Loddar


Bezug
                
Bezug
Winkel + Mittelpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:11 So 12.08.2007
Autor: Maraike89

Danke!

$ [mm] \overrightarrow{AB} [/mm] \ = \ [mm] \vec{b} [/mm] \ [mm] \re{-} [/mm] \ [mm] \vec{a} [/mm] \ = \ [mm] \vektor{6\\5\\-2}-\vektor{0\\-1\\3} [/mm] \ =  [mm] \vektor{6\\6\\-5}$ [/mm]

$ [mm] \overrightarrow{AC} [/mm] \ = \ [mm] \vec{c} [/mm] \ [mm] \re{-} [/mm] \ [mm] \vec{a} [/mm] \ = \ [mm] \vektor{1\\-2\\3}-\vektor{0\\-1\\3} [/mm] \ =  [mm] \vektor{1\\-1\\0}$ [/mm]

Skalarprodukt = 6 - 6 +0 = 0

Richtig?

Bezug
                        
Bezug
Winkel + Mittelpunkt: Nun stimmt's
Status: (Antwort) fertig Status 
Datum: 14:13 So 12.08.2007
Autor: Loddar

Hallo Maraike!


[daumenhoch] So ist es richtig.


Gruß
Loddar


Bezug
                                
Bezug
Winkel + Mittelpunkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:19 So 12.08.2007
Autor: Maraike89

Danke!!!

Bezug
        
Bezug
Winkel + Mittelpunkt: Aufgabe b.)
Status: (Antwort) fertig Status 
Datum: 14:11 So 12.08.2007
Autor: Loddar

Hallo Maraike!


> zu b) Muss man hier per Addition zuerst die Strecke [mm]\vec{a}[/mm] + [mm]\vec{b}[/mm]
> ausrechnen, also  [mm]\overrightarrow{AB}[/mm] = (6,4,6)

[notok] Das ist aber nicht der Vektor [mm]\overrightarrow{AB}[/mm] (siehe oben).


> und dann mal 0,5 rechnen? Also  [mm]\overrightarrow{AB[M]}[/mm] = (3,2,3) ?

[ok] Richtig! Das Ergebnis stimmt.

  

> Betrag
>  
> P1 =  [mm]\wurzel{(1²,1²,4²)}[/mm] = 3 [mm]\wurzel{2}[/mm]
> P1 =  [mm]\wurzel{(5², 3², 2²)}[/mm] = [mm]\wurzel{38}[/mm]  

[notok] Hier nach dem Betrag des Vektors [mm] $\vec{s} [/mm] \ = \ [mm] \overrightarrow{OM} [/mm] \ = \ [mm] \vektor{3\\2\\3}$ [/mm] gefragt.


Gruß
Loddar


Bezug
                
Bezug
Winkel + Mittelpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:18 So 12.08.2007
Autor: Maraike89

Hi,

also subrahieren? P2-P1= (4,2,-2)

Mal 0,5 = (2,1,-1) ODER (3,2,3)=???

$ [mm] \vec{s} [/mm] \ = \ [mm] \overrightarrow{OM} [/mm] \ = \ [mm] \vektor{3\\2\\3} [/mm] $ = [mm] \wurzel{22} [/mm]

oder

$ [mm] \vec{s} [/mm] \ = \ [mm] \overrightarrow{OM} [/mm] \ = \ [mm] \vektor{2\\1\\-1} [/mm] $ = [mm] \wurzel{6} [/mm] ?



Bezug
                        
Bezug
Winkel + Mittelpunkt: Mittelpunkt war richtig
Status: (Antwort) fertig Status 
Datum: 14:22 So 12.08.2007
Autor: Loddar

Hallo Maraike!


Den Mittelpunkt $M_$ der Strecke [mm] $\overline{P_1P_2}$ [/mm] hattest Du oben schon richtig berechnet mit:

[mm] $\overrightarrow{OM} [/mm] \ = \ [mm] \bruch{\overrightarrow{OP_1}+\overrightarrow{OP_2}}{2} [/mm] \ = \ ... \ = \ [mm] \vektor{3\\2\\3}$ [/mm]


Gruß
Loddar


Bezug
                                
Bezug
Winkel + Mittelpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:25 So 12.08.2007
Autor: Maraike89

Und der Betrag des Vektors $ [mm] \vec{s}, [/mm] $ der vom Koordinatenursprung zu diesem Mittelpunkt führt?

Bezug
                                        
Bezug
Winkel + Mittelpunkt: auch richtig
Status: (Antwort) fertig Status 
Datum: 14:32 So 12.08.2007
Autor: Loddar

Hallo Maraike!


Der ist auch richtig ermittelt, wenn Du den richtigen der beiden Vektoren wählst.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]