www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Winkel
Winkel < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Winkel: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:24 So 27.07.2008
Autor: bigalow

Aufgabe
[Dateianhang nicht öffentlich]

Ich habe eine Frage zum Winkel [mm] \alpha': [/mm] Rechnerisch kann ich zwar nachvollziehen das der Winkel in der oberen "Ecke" dem Winkel [mm] \alpha [/mm] unter dem Balken entsprechen muss.
[mm] 90°+\alpha+\beta=180° [/mm]

[mm] 90°+\alpha +(90-\alpha)=180° [/mm]

Gibt es eine Merkregel hierzu und/oder wie nennt man das Verhältnis von [mm] \alpha [/mm] zu [mm] \alpha'. [/mm] Ein Link zum Thema wär natürlich auch super.

Besten Dank im Voraus für eure Antworten!


Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Winkel: Antwort
Status: (Antwort) fertig Status 
Datum: 15:36 So 27.07.2008
Autor: Somebody


> [Dateianhang nicht öffentlich]
>  Ich habe eine Frage zum Winkel [mm]\alpha':[/mm] Rechnerisch kann
> ich zwar nachvollziehen das der Winkel in der oberen "Ecke"
> dem Winkel [mm]\alpha[/mm] unter dem Balken entsprechen muss.

Streng genommen kann man dies aus der Skizze nicht schliessen. Dies gilt nur unter der (vermutlich richtigen) Annahme, dass [mm] $\alpha+\beta=90^\circ$, [/mm] also [mm] $\alpha=90^\circ-\beta$ [/mm] ist. Dann kann man eben sagen: [mm] $\alpha'$ [/mm] und [mm] $\beta$ [/mm] sind Komplementwinkel [mm] ($\alpha'+\beta=90^\circ$, [/mm] also auch [mm] $\alpha'=90^\circ-\beta$), [/mm] denn es sind die beiden spitzen Winkel desselben rechtwinkligen Dreiecks. Insgesamt hat man also [mm] $\alpha'=90^\circ-\beta=\alpha$, [/mm] d.h. [mm] $\alpha'=\alpha$. [/mm]

>  [mm]90°+\alpha+\beta=180°[/mm]

oder, einfacher, [mm] $\alpha+\beta=90^\circ$. [/mm]

>
> [mm]90°+\alpha +(90-\alpha)=180°[/mm]

Hm, ja klar. Aber kommt jetzt [mm] $\alpha'$ [/mm] ins Spiel?

>  
> Gibt es eine Merkregel hierzu und/oder wie nennt man das
> Verhältnis von [mm]\alpha[/mm] zu [mm]\alpha'.[/mm] Ein Link zum Thema wär
> natürlich auch super.

Merkregel? - nicht ganz ernst gemeint: 1. Regel: Trage alle relevanten Kenntnisse in die Skizze ein (eben [mm] $\alpha+\beta=90^\circ$). [/mm] 2. Regel: Die beiden spitzen Winkel eines rechwinkligen Dreiecks ergänzen sich zu [mm] $90^\circ$. [/mm]
Der Rest ist Algebra.

Bezug
        
Bezug
Winkel: Antwort
Status: (Antwort) fertig Status 
Datum: 16:08 So 27.07.2008
Autor: weduwe

[]normalwinkel



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]