www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik (Anwendungen)" - Wilcoxon
Wilcoxon < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wilcoxon: Cauchyverteilung
Status: (Frage) überfällig Status 
Datum: 20:12 So 15.07.2012
Autor: dennis2

Aufgabe
Es sei $m=n=10$. Ferner seien [mm] $x_1,\hdots,x_{10}$ [/mm] Beobachtungen aus einer Cauchy-Verteilung mit Lokationsparameter [mm] $\mu_1=0$ [/mm] und [mm] $x_{11},\hdots,x_{20}$ [/mm] aus einer Cauchyverteilung mit Lokationsparameter [mm] $\mu_2=3$: [/mm]

Hier die Daten [mm] $x_1,\hdots,x_{10}$: [/mm]

-0.55  2.65  0.71  -7.54  -1.64  31.44  -1.06  -0.02  0.06  0.08


Und dies sind die Daten [mm] $x_{11},\hdots,x_{20}$: [/mm]

9.58  3.24  5.18  1.78  -2.23  2.69  1.50  3.89  3.57  3.64


Testen Sie [mm] $H_0: \mu_1\leq \mu_2$ [/mm] gegen [mm] $H_1: \mu_1>\mu_2$ [/mm] mit Hilfe des Wilcoxon Rangsummentests zum Niveau 0,01.



Moin, meine Frage ist: Ist das so gemeint, dass es hier um eine Verschiebung der Verteilungsfunktion geht?

Ich frage mich, was man hier mit "Lokationsparameter" meint und ob ein größerer Lokationsparameter bedeutet, dass die Verteilungsfunktion nach links oder nach rechts verschoben wird.


Ich würde meinen, daß ein größerer Lokationsparameter bedeutet, daß die Verteilungsfunktion weiter nach rechts verschoben wird.

Wenn ich also die Ränge der zweiten Stichprobe aufsummiere, müssten für die Alternative dann kleinere Rangsummen sprechen.

Demnach würde ich meinen, handelt es sich hier um ein linksseitiges Testproblem und ich muss die Nullhypothese ablehnen, wenn

[mm] $W:=\sum\limits_{i=11}^{20}R_i

Ich komme auf $W=135$.

Demnach kann die Nullhypothese nicht abgelehnt werden!



Anderes Sigknifikanzniveau: 0.025:

Auch hier komme ich darauf, daß [mm] $H_0$ [/mm] nicht abgelehnt werden kann, da

[mm] $W=135>w_{0.025}=78$. [/mm]





Stimmt das so?

        
Bezug
Wilcoxon: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Di 17.07.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]