www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Wie integriert man einen Bruch
Wie integriert man einen Bruch < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wie integriert man einen Bruch: Bruch + Polynom?
Status: (Frage) beantwortet Status 
Datum: 15:09 So 26.06.2011
Autor: bandchef

Aufgabe
Integriere: [mm] $\integral_0^1 \frac{x^4+2x^3-x^2+3x-1}{x^2+1}dx$ [/mm]


Wie integriert man das? Ich hab schon probiert das (vorerst) unbestimmte Integral in das Zählerpolynom und einen Bruch in 1 durch das Nennerpolynom zu zerlegen und danach das ganze partielle zu Integrieren, was aber ziemlich unschön bei diesen Polynomen wird. Gibt's da was einfacheres?

        
Bezug
Wie integriert man einen Bruch: Antwort
Status: (Antwort) fertig Status 
Datum: 15:15 So 26.06.2011
Autor: fencheltee


> Integriere: [mm]\integral_0^1 \frac{x^4+2x^3-x^2+3x-1}{x^2+1}dx[/mm]
>  
> Wie integriert man das? Ich hab schon probiert das
> (vorerst) unbestimmte Integral in das Zählerpolynom und
> einen Bruch in 1 durch das Nennerpolynom zu zerlegen und
> danach das ganze partielle zu Integrieren, was aber
> ziemlich unschön bei diesen Polynomen wird. Gibt's da was
> einfacheres?

hallo, erstmal polynomdivision und anschließend partialbruchzerlegung

edit: die pbz ist natürlich hier höchst unnötig - im allgemeinen (bei nennern wie [mm] x^2-1) [/mm] aber dennoch dann durchzuführen

gruß tee

Bezug
                
Bezug
Wie integriert man einen Bruch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:20 So 26.06.2011
Autor: bandchef

polynomdivision geht klar. Was eine Partialbruchzerlegung ist weiß ich nicht...

Bezug
                        
Bezug
Wie integriert man einen Bruch: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:32 So 26.06.2011
Autor: Al-Chwarizmi


> polynomdivision geht klar. Was eine Partialbruchzerlegung
> ist weiß ich nicht...

Im vorliegenden Beispiel ist sie nicht einmal unbedingt
hilfreich !

LG


Bezug
                        
Bezug
Wie integriert man einen Bruch: Antwort
Status: (Antwort) fertig Status 
Datum: 15:38 So 26.06.2011
Autor: schachuzipus

Hallo bandchef,


> polynomdivision geht klar. Was eine Partialbruchzerlegung
> ist weiß ich nicht...


Wir hatten "Partialbruchzerlegung" damals schon in der Schule als Thema ...

Ich kann mir auch nur schwerlich vorstellen, dass das nicht bei euch in der VL dran war ... Ansonsten darf man als Student auch gerne mal eigeninitiativ was nachschlagen (schadet nix), du musst ja nicht einmal ein Ana-Buch konsultieren, ein kleiner Blick auf wikipedia reicht aus, um einen Eindruck von der PBZ zu bekommen ...

Nun, wie dem auch sei: hier kommst du auch ohne PBZ aus.

Mache zunächst die Polynomdivision. Der ganzrationale Teil ist ja problemlos, der gebrochen-rationale Teil lässt sich "auseinanderziehen", dann kommst du "so" klar.

Üblicherweise erschlägt man den verbleibenden gebr.-rat. Teil halt mit PBZ.

Aber rechne erstmal die Polynomdivision, dann wird dir das schon klar werden ...

Gruß

schachuzipus




Bezug
                                
Bezug
Wie integriert man einen Bruch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:03 So 26.06.2011
Autor: bandchef

Also nach der PD komm ich auf [mm] $x^2+2x-2+\frac{x+1}{x^2+1}$. [/mm] Was halt hier zm Integrieren noch etwas stört ist der Bruch; und genau diesen soll man nun jetzt noch mit der Partialbruchzerlegung erschlagen, oder wie?

Bezug
                                        
Bezug
Wie integriert man einen Bruch: Antwort
Status: (Antwort) fertig Status 
Datum: 16:07 So 26.06.2011
Autor: schachuzipus

Hallo nochmal,


> Also nach der PD komm ich auf [mm]x^2+2x-2+\frac{x+1}{x^2+1}[/mm]. [ok]
> Was halt hier zm Integrieren noch etwas stört ist der
> Bruch; und genau diesen soll man nun jetzt noch mit der
> Partialbruchzerlegung erschlagen, oder wie?

Üblicherweise tut man das, hier aber ohne - habe ich doch geschrieben. Hast du meine Antwort nicht gelesen?

Es ist [mm] $\frac{x+1}{x^2+1}=\frac{x}{x^2+1}+\frac{1}{x^2+1}$ [/mm]

Damit hast du die Summe zweier einfacher Integrale, für das erste erweitere mit $2$ (oder substituiere direkt [mm] $u=x^2+1$) [/mm]

Das andere kennst du hoffentlich (sonst: substituiere [mm] $x=\tan(z)$) [/mm]

Gruß
schachuzipus



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]