www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Wie groß ist der Winkel?
Wie groß ist der Winkel? < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wie groß ist der Winkel?: Nachfrage
Status: (Frage) beantwortet Status 
Datum: 17:31 So 21.11.2010
Autor: svcds

Aufgabe
Sei I der Inkreismittelpunkt des Dreiecks ABC. Sei [mm] \measuredangle [/mm] BAC = [mm] \alpha. [/mm] Bestimmen Sie [mm] \measuredangle [/mm] BIC.


Hi,

also ich hab erstmal die senkrechten Geraden auf AB, CB und AC gelegt.

Schnittpunkt mit AB ist H, BC ist G, AC ist F.

Also ich hab das alles so weit umgestellt.

Dann kommt da raus:

[mm] \measuredangle [/mm] BIC = [mm] \alpha [/mm] + [mm] \measuredangle [/mm] FIC + [mm] \measuredangle [/mm] IBH.

[]http://s1.directupload.net/file/d/2350/uantjjf3_png.htm

Denkt ihr, dass kann ich so stehen lassen?

GLG

        
Bezug
Wie groß ist der Winkel?: Winkelhalbierende
Status: (Antwort) fertig Status 
Datum: 16:49 Mo 22.11.2010
Autor: moudi

Hallo svcds

Ich glaube die Loesung ist anders gemeint. Benutze die Tatsache, dass der Inkreismittelpunkt auf den Winkelhalbierenden liegt. Damit kannst du [mm] $\sphericalangle [/mm] BIC$ durch [mm] $\beta$ [/mm] und [mm] $\gamma$ [/mm] ausdruecken. Da die Winkelsumme im Dreieck [mm] $180^\circ$ [/mm] ist, kannst du dann den Winkel [mm] $\alpha$ [/mm]  ins Spiel bringen.

mfG Moudi

Bezug
                
Bezug
Wie groß ist der Winkel?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 05:07 Di 23.11.2010
Autor: svcds

naja ich kann ja auch sagen dass Winkel BIC = [mm] \alpha [/mm] + [mm] \bruch{\beta}{2} [/mm] + 90° - [mm] \bruch{\gamma}{2} [/mm]

Bezug
                        
Bezug
Wie groß ist der Winkel?: Antwort
Status: (Antwort) fertig Status 
Datum: 08:00 Di 23.11.2010
Autor: statler

Guten Morgen!

> naja ich kann ja auch sagen dass Winkel BIC = [mm]\alpha[/mm] +
> [mm]\bruch{\beta}{2}[/mm] + 90° - [mm]\bruch{\gamma}{2}[/mm]  

Sagen kannst du das natürlich, aber ich glaube nicht, daß es richtig ist. Geh doch mal dem Tip von moudi nach.
Du hast einmal das ganze Dreieck ABC, da ist [mm] \alpha [/mm] + [mm] \beta [/mm] + [mm] \gamma [/mm] = 180°, und dann noch das Teildreieck BCI, da ist [mm] \angle [/mm] BIC + [mm] \bruch{\beta}{2} [/mm]
+ [mm] \bruch{\gamma}{2} [/mm] = 180°, jetzt kannst du ganz klassisch die 2. Gleichung mit 2 multiplizieren und dann von der 1. abziehen, dann hast du, was du brauchst. FF

Gruß aus HH-Harburg
Dieter

Bezug
        
Bezug
Wie groß ist der Winkel?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:10 Mi 24.11.2010
Autor: svcds

okay hab jetzt stehen Winkel BCI = [mm] \bruch{\alpha}{2} [/mm] + 90° sieht doch schöner aus :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]