www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Wie berechne ich P(AnB)
Wie berechne ich P(AnB) < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wie berechne ich P(AnB): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:44 Do 07.03.2019
Autor: bondi

Aufgabe
Sei $( [mm] \Omega, [/mm] P) ein endlicher Wahrscheinlichkeitsraum.
Seien $ A, B [mm] \subseteq \Omega [/mm] $ mit $ P(A)= [mm] \bruch{3}{8}, [/mm] P(B)= [mm] \bruch{1}{2}, [/mm] P(A [mm] \cap [/mm] B)= [mm] \bruch{1}{4} [/mm] $.
Berechne $ P( [mm] \bar [/mm] A [mm] \cap \bar [/mm] B)$ und $ P( [mm] \bar [/mm] A [mm] \cup \bar [/mm] B) $




Hi,
stimmt ihr mir zu, dass $ P( [mm] \bar [/mm] A [mm] \cap \bar [/mm] B)$  das Ergebnis von  $ P( [mm] \bar [/mm] A)$ unter der Bedingung $ P( [mm] \bar [/mm] B)$ ist.

Falls das stimmt rechne ich folgendes:

$ P( [mm] \bar [/mm] A) = 1- [mm] \bruch{3}{8} [/mm] = [mm] \bruch{5}{8}$ [/mm]

$ P( [mm] \bar [/mm] B) = 1- [mm] \bruch{1}{2} [/mm] = [mm] \bruch{1}{2}$ [/mm]

Multipliziere dann und komme so auf

$ [mm] \bruch{5}{8} [/mm] * [mm] \bruch{1}{2} [/mm] = [mm] \bruch{5}{16} [/mm] =  P( [mm] \bar [/mm] A [mm] \cap \bar [/mm] B) $

Addiere ich bei $  P( [mm] \bar [/mm] A [mm] \cup \bar [/mm] B) $ die entgegengesetzten Ereignisse?



        
Bezug
Wie berechne ich P(AnB): Antwort
Status: (Antwort) fertig Status 
Datum: 12:12 Do 07.03.2019
Autor: fred97


> Sei $( [mm]\Omega,[/mm] P) ein endlicher Wahrscheinlichkeitsraum.
>  Seien [mm]A, B \subseteq \Omega[/mm] mit [mm]P(A)= \bruch{3}{8}, P(B)= \bruch{1}{2}, P(A \cap B)= \bruch{1}{4} [/mm].
>  
> Berechne [mm]P( \bar A \cap \bar B)[/mm] und [mm]P( \bar A \cup \bar B)[/mm]
>  
>
>
> Hi,
>  stimmt ihr mir zu, dass [mm]P( \bar A \cap \bar B)[/mm]  das
> Ergebnis von  [mm]P( \bar A)[/mm] unter der Bedingung [mm]P( \bar B)[/mm]
> ist.

Nein, da stimme ich nicht zu ! Was soll das denn eigentlich bedeuten:

   "[mm]P( \bar A)[/mm] unter der Bedingung [mm]P( \bar B)[/mm] " ???

Hat mit bedingter Wahrscheinlichkeit nix zu tun !


>  
> Falls das stimmt rechne ich folgendes:

Es stimmt nicht, aber dennoch:

>  
> [mm]P( \bar A) = 1- \bruch{3}{8} = \bruch{5}{8}[/mm]

Stimmt.


>
> [mm]P( \bar B) = 1- \bruch{1}{2} = \bruch{1}{2}[/mm]

Stimmt.


>
> Multipliziere dann und komme so auf
>  
> [mm]\bruch{5}{8} * \bruch{1}{2} = \bruch{5}{16} = P( \bar A \cap \bar B)[/mm]

Nein, du kannst doch nicht einfach multiplizieren ! Das geht nur gut bei unabhängigen Erignissen

>  
> Addiere ich bei [mm]P( \bar A \cup \bar B)[/mm] die
> entgegengesetzten Ereignisse?

Nein, auch das ist Unsiin, Du würdest ja dann eine Wahrscheinlichkeit >1 bekommen.

Wir bemühen Herrn Morgan: $ [mm] \bar [/mm] A [mm] \cup \bar [/mm] B= [mm] \overline{A \cap B}$. [/mm]

Kannst Du nun $P( [mm] \bar [/mm] A [mm] \cup \bar [/mm] B)$ berechnen ?

Für $P( [mm] \bar [/mm] A [mm] \cap \bar [/mm] B)$ benutze nun die Formel



$ [mm] P(C\cup [/mm] D) = [mm] P(C)+P(D)-P(C\cap [/mm] D) $.

>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]