Wichtige Bemerkung zu Thema < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:06 Di 28.03.2006 | Autor: | hochst |
Wieso wurde im Thread: https://matheraum.de/read?t=62487
die Bahauptung das eine Menge bestehende aus nur einem Element offen sein kann?
Im vorletzten post dieses, leider geschlossenen Beitrag, schreibt jemand:
"Da wir eine ähnliche Aufgabe haben, hab ich da noch eine Nachfrage:
Dass z.b. M = {5} offen ist, leuchtet mit der Kugeldefinition ein."
Das ist doch Schwachsinn, zumindest wenn man die Menge der rellen Zahlen als metrischen Raum verwendet, liegen allein in jeder offenen Kugel schon unendlich viele Elemente.
Ich frage mich wirklich wieso diesem User das "einleuchten" kann, ich meine ich kann schon nicht mehr schlafen weil ich davon schon träume und es einfach nicht loswerde.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Eine Menge ist nicht von Natur aus offen oder abgeschlossen oder sonst etwas. Das hängt nämlich immer vom topologischen Raum ab, als dessen Teilmenge man diese Menge betrachtet. Deshalb sollte man auch, wenn das aus dem Zusammenhang nicht eindeutig hervorgeht, immer sagen "offen in ..." und nicht nur einfach "offen".
In der dortigen Aufgabe wird von der euklidischen Metrik [mm]d(x,y) = |x-y|[/mm] auf [mm]\mathbb{R}[/mm] ausgegangen. Jetzt betrachtet man die Menge [mm]A = \{ 5 \}[/mm].
Natürlich ist [mm]A[/mm] nicht offen in [mm]\mathbb{R}[/mm], da jede [mm]\mathbb{R}[/mm]-offene Menge unendlich viele Elemente enthält. Das siehst du also vollkommen richtig.
Aber [mm]A[/mm] ist offen im Raum [mm]E[/mm] mit
[mm]E = [0,1) \cup [2,3] \cup \{ 5 \}[/mm]
Betrachte die "Kugel" vom Radius 1 um 5:
[mm]B_1(5) = \left\{ \, x \in E \, \left| \, d(x,5)<1 \right. \right\}[/mm]
Beachte, daß es hier heißt [mm]x \in E[/mm] und nicht [mm]x \in \mathbb{R}[/mm]! Als Kugel in [mm]E[/mm] gilt: [mm]B_1(5) = \{ 5 \} = A[/mm], denn 5 ist das einzige Element von [mm]E[/mm], das von 5 einen kleineren Abstand als 1 hat. Kugeln sind aber offen, also ist [mm]A[/mm] offen - natürlich offen in [mm]E[/mm].
Vielleicht liest du dir die dortigen Beiträge noch einmal erneut durch. Dann kannst du auch wieder ruhig schlafen ...
|
|
|
|