www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Wertebestimmung Ungleichung
Wertebestimmung Ungleichung < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wertebestimmung Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:06 Do 18.02.2010
Autor: FiftyCent

Aufgabe
Bestimme alle [mm]x\in\R[/mm], die die [mm] Ungleichung\\ [/mm]
[mm]\frac{\left |x-2\right | \cdot \left (x+2\right )}{x} < \left | x\right |[/mm] erfüllen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Im folgende habe ich meinen Lösungsweg aufgezeichnet. Ich frage mich (a) ob dieser richtig ist und (b) wenn ja, wie habe ich die Null zu interpretieren und (c) wie sieht jetzt die Lösungsmenge aus?

1. Fall: angenommen [mm]x\ge 2[/mm], dann ist [mm]\left |x-2\right | = x-2[/mm] und [mm]\left |x\right |=x[/mm].  

[mm]\begin{matrix} \frac{\left (x-2\right )\cdot\left ( x+2\right )}{x} & < & x \\ x^2 + 4 & < & x^2 \\ 4 & < & 0 \\ \end{matrix}[/mm]

2. Fall: angenommen [mm]x<2[/mm] (jetzt der negative Fall)

[mm]\begin{matrix} \frac{-\left (x-2\right )\cdot\left ( x+2\right )}{x} & < & -x \\ \frac{-\left( x^2+4\right )}{x} & < & -x \\ -x^2-4 & < & -x^2 \\ x^2 + 4 & > & x^2 \\ 4 & > & 0 \\ \end{matrix}[/mm]

Vom 1. Fall weiss ich nicht, wie ich die Aussage zu interpretieren habe? Sie kommt mir falsch vor, aber wo ist der Fehler. Bei 2. Fall ist die Aussage richtig. Wie setzt sich jetzt die Lösungsmenge zusammen?

Vielen Dank für die Hilfe!

        
Bezug
Wertebestimmung Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:10 Do 18.02.2010
Autor: FiftyCent

Aufgabe
Bestimme alle [mm]x\in\IR[/mm], die die [mm] Ungleichung\\ [/mm]
[mm]\frac{\left |x-2\right | \cdot \left (x+2\right )}{x} < \left | x\right |[/mm] erfüllen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Im folgenden habe ich meinen Lösungsweg aufgezeichnet. Ich frage mich (a) ob dieser richtig ist und (b) wenn ja, wie habe ich die Null zu interpretieren und (c) wie sieht jetzt die Lösungsmenge aus?

1. Fall: angenommen [mm]x\ge 2[/mm], dann ist [mm]\left |x-2\right | = x-2[/mm] und [mm]\left |x\right |=x[/mm].  

[mm]\begin{matrix} \frac{\left (x-2\right )\cdot\left ( x+2\right )}{x} & < & x \\ x^2 + 4 & < & x^2 \\ 4 & < & 0 \\ \end{matrix}[/mm]

2. Fall: angenommen [mm]x<2[/mm] (jetzt der negative Fall)

[mm]\begin{matrix} \frac{-\left (x-2\right )\cdot\left ( x+2\right )}{x} & < & -x \\ \frac{-\left( x^2+4\right )}{x} & < & -x \\ -x^2-4 & < & -x^2 \\ x^2 + 4 & > & x^2 \\ 4 & > & 0 \\ \end{matrix}[/mm]

Vom 1. Fall weiss ich nicht, wie ich die Aussage zu interpretieren habe? Sie kommt mir falsch vor, aber wo ist der Fehler. Bei 2. Fall ist die Aussage richtig. Wie setzt sich jetzt die Lösungsmenge zusammen?

Vielen Dank für die Hilfe!

Bezug
                
Bezug
Wertebestimmung Ungleichung: Doppelpost
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:22 Do 18.02.2010
Autor: Loddar

Hallo FiftyCent,

[willkommenmr] !!


Du hast diese Frage bereits hier gestellt.

Bitte in Zukunft derartige Doppelposts vermeiden.


Gruß
Loddar


Bezug
                
Bezug
Wertebestimmung Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:23 Do 18.02.2010
Autor: fencheltee


> Bestimme alle [mm]x\in\IR[/mm], die die [mm]Ungleichung\\[/mm]
>  [mm]\frac{\left |x-2\right | \cdot \left (x+2\right )}{x} < \left | x\right |[/mm]
> erfüllen.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Im folgenden habe ich meinen Lösungsweg aufgezeichnet. Ich
> frage mich (a) ob dieser richtig ist und (b) wenn ja, wie
> habe ich die Null zu interpretieren und (c) wie sieht jetzt
> die Lösungsmenge aus?
>  
> 1. Fall: angenommen [mm]x\ge 2[/mm], dann ist [mm]\left |x-2\right | = x-2[/mm]
> und [mm]\left |x\right |=x[/mm].  
>
> [mm]\begin{matrix} \frac{\left (x-2\right )\cdot\left ( x+2\right )}{x} & < & x \\ x^2 + 4 & < & x^2 \\ 4 & < & 0 \\ \end{matrix}[/mm]

fehler beim ausmultiplizieren (2. zeile), am ende kriegst du hier raus: -4 < 0 und das ist immer der fall, somit ist [mm] x\ge2 [/mm] schonmal lösung

>  
> 2. Fall: angenommen [mm]x<2[/mm] (jetzt der negative Fall)
>  

mh hier kannst du nur den linken betrag auflösen, der rechte ist immer noch positiv für [mm] 0\le [/mm] x [mm] \le [/mm] 2 also ist dein 2. fall erstmal von 0 bis 2. der dritte fall dann für x<0.  desweiteren wieder der gleiche fehler [mm] (a+b)*(a-b)=a^2-b^2 [/mm]

> [mm]\begin{matrix} \frac{-\left (x-2\right )\cdot\left ( x+2\right )}{x} & < & -x \\ \frac{-\left( x^2+4\right )}{x} & < & -x \\ -x^2-4 & < & -x^2 \\ x^2 + 4 & > & x^2 \\ 4 & > & 0 \\ \end{matrix}[/mm]
>  
> Vom 1. Fall weiss ich nicht, wie ich die Aussage zu
> interpretieren habe? Sie kommt mir falsch vor, aber wo ist
> der Fehler. Bei 2. Fall ist die Aussage richtig. Wie setzt
> sich jetzt die Lösungsmenge zusammen?
>  
> Vielen Dank für die Hilfe!

gruß tee

Bezug
        
Bezug
Wertebestimmung Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:15 Do 18.02.2010
Autor: abakus


> Bestimme alle [mm]x\in\R[/mm], die die [mm]Ungleichung\\[/mm]
>  [mm]\frac{\left |x-2\right | \cdot \left (x+2\right )}{x} < \left | x\right |[/mm]
> erfüllen.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Im folgende habe ich meinen Lösungsweg aufgezeichnet. Ich
> frage mich (a) ob dieser richtig ist

Da [mm] (x-2)(x+2)=x^2\red{-}4 [/mm] gilt, ist da ein Fehler drin.

> und (b) wenn ja, wie
> habe ich die Null zu interpretieren und (c) wie sieht jetzt
> die Lösungsmenge aus?
>  
> 1. Fall: angenommen [mm]x\ge 2[/mm], dann ist [mm]\left |x-2\right | = x-2[/mm]
> und [mm]\left |x\right |=x[/mm].  
>
> [mm]\begin{matrix} \frac{\left (x-2\right )\cdot\left ( x+2\right )}{x} & < & x \\ x^2 + 4 & < & x^2 \\ 4 & < & 0 \\ \end{matrix}[/mm]
>  
> 2. Fall: angenommen [mm]x<2[/mm] (jetzt der negative Fall)
>  
> [mm]\begin{matrix} \frac{-\left (x-2\right )\cdot\left ( x+2\right )}{x} & < & -x \\ \frac{-\left( x^2+4\right )}{x} & < & -x \\ -x^2-4 & < & -x^2 \\ x^2 + 4 & > & x^2 \\ 4 & > & 0 \\ \end{matrix}[/mm]

Hallo,
deinen zweiten Fall musst du unterteilen in x<0 und 0<x<2.  Es ist nämlich nicht immer |x|=-x.
Gruß Abakus

>  
> Vom 1. Fall weiss ich nicht, wie ich die Aussage zu
> interpretieren habe? Sie kommt mir falsch vor, aber wo ist
> der Fehler. Bei 2. Fall ist die Aussage richtig. Wie setzt
> sich jetzt die Lösungsmenge zusammen?
>  
> Vielen Dank für die Hilfe!


Bezug
                
Bezug
Wertebestimmung Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:37 Do 18.02.2010
Autor: FiftyCent

Vielen Dank für die prompte Antwort!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]