www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Wertebereich einer Funktion
Wertebereich einer Funktion < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wertebereich einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:33 So 01.02.2009
Autor: Sarah288

Hallo zusammen,

ich habe mal eine Frage: Kann ich den Wertebereich einer Funktion erkennen, ohne dass ich die Funktion zeichnen muss?

Wie sieht das beispielsweise bei folgender Funktion aus:

[mm] f(x)=\bruch{2x-4}{x-1} [/mm]
Daraus ergibt sich ja ein [mm] D_{f}=\IR [/mm] \ {1}

Wie kann ich daraus den Wertebereich ableiten?
Vielen Dank im Voraus.

        
Bezug
Wertebereich einer Funktion: Polstelle
Status: (Antwort) fertig Status 
Datum: 11:40 So 01.02.2009
Autor: Loddar

Hallo Sarah!


Da Du hier eine rationale Funktion mit einer Polstelle bei [mm] $x_p [/mm] \ = \ 1$ mit Vorzeichenwechsel hast, gehen die Funktionwerte in der Nähe der Polstelle gegen [mm] $\pm\infty$ [/mm] .

Die einzige Sonderstelle ist $y \ = \ 2$ , da dies die Asymptote für [mm] $\limes_{x\rightarrow\pm\infty}f(x)$ [/mm] ist.

Damit lautet der Wertebereich:  [mm] $\IW [/mm] \ = \ [mm] \IR\backslash\{2\}$ [/mm]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]