www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Wertebereich
Wertebereich < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wertebereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:54 So 21.10.2007
Autor: swine

Aufgabe
[mm] k(x)=\bruch{1}{(x-2)(x+2)} [/mm]

Lösung
[mm] W(x)=\IR/\{y:-1/4

Da bei der Aufgabe die Graphen Graphisch dargestellt wurden, sehe ich schon ein, wieso die Lösung [mm] \IR [/mm] ausser [mm] -1/4
Ich habe aber keine Ahnung, wie ich auf diese Lösung hätte kommen können... Hätte mir allenfalls jemand die Theorie, wie ich auf den Wertbereich komme, damit ich in Zukunft den Wertebereich ausrechnen kann, denn die Theorie meines Dozenten hilft mir nichts bei dieser Aufgabe...

Besten Dank im Voraus

        
Bezug
Wertebereich: 2 Wege
Status: (Antwort) fertig Status 
Datum: 17:04 So 21.10.2007
Autor: Loddar

Hallo swine!


Entweder bestimmst Du hier die zugehörige Umkehrfunktion und bestimmst dessen Definitionsbereich: das ist nämlich exakt der Wertebereich der Ausgangsfunktion.

[mm] $$k^{-1}(x) [/mm] \ = \ [mm] \pm\wurzel{\bruch{1}{x}+4} [/mm] \ = \ [mm] \pm\bruch{\wurzel{1+4x}}{\wurzel{x}}$$ [/mm]

Oder Du machst eine Kurvendiskussion und bestimmst die zugehörigen Extrema sowie die Randgrenzwerte.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]