Wert einer Reihe bestimmen < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:07 Do 22.01.2009 | Autor: | Boki87 |
Aufgabe | Die Funktion $ [mm] f(x)=\begin{cases} 0, & \mbox{für } -1\le x<0 \mbox{} \\ x^3, & \mbox{für } 0\le x<1 \mbox{} \end{cases} [/mm] $
sei mit der Periode 2 fortgesetzt.
Berechnen sie den Wert der Reihe [mm] \summe_{n=1}^{\infty}=\bruch{1}{2^2}+\bruch{1}{4^2}+\bruch{1}{6^2}+..., [/mm] indem sie die Fourierreihe an den Stellen x=0 und x=1 auswerten. |
Die Fourierreihe lautet $ [mm] F(x)=\bruch{1}{8}+\summe_{n=1}^{\infty}((-1)^n\bruch{3}{\pi^2n^2}-(-1)^n\bruch{6}{\pi^4n^4}+\bruch{6}{\pi^4n^4})cos(nx\pi)+((-1)^n\bruch{1}{n\pi}+(-1)^n\bruch{6}{\pi^3n^3})sin(nx\pi) [/mm] $.
Nun habe ich die 2 Stellen eingesetzt:
F(0)= [mm] F(x)=\bruch{1}{8}+\summe_{n=1}^{\infty}\bruch{3((\pi^2n^2-2)(-1)^n+2)}{\pi^4n^4}=??? [/mm] (1)
F(1)= [mm] F(x)=\bruch{1}{8}+\summe_{n=1}^{\infty}\bruch{3((\pi^2n^2-2)(-1)^n+2)(-1)^n}{\pi^4n^4}=??? [/mm] (2)
Ich erkenne gleich, dass ich machen kann (1)+(2) nur ich weiß nicht was ich statt der Fragezeichen schreiben muss.
Danke schön schonmal im Voraus
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:13 Fr 23.01.2009 | Autor: | fred97 |
> Die Funktion [mm]f(x)=\begin{cases} 0, & \mbox{für } -1\le x<0 \mbox{} \\ x^3, & \mbox{für } 0\le x<1 \mbox{} \end{cases}[/mm]
>
> sei mit der Periode 2 fortgesetzt.
>
> Berechnen sie den Wert der Reihe
> [mm]\summe_{n=1}^{\infty}=\bruch{1}{2^2}+\bruch{1}{4^2}+\bruch{1}{6^2}+...,[/mm]
> indem sie die Fourierreihe an den Stellen x=0 und x=1
> auswerten.
> Die Fourierreihe lautet
> [mm]F(x)=\bruch{1}{8}+\summe_{n=1}^{\infty}((-1)^n\bruch{3}{\pi^2n^2}-(-1)^n\bruch{6}{\pi^4n^4}+\bruch{6}{\pi^4n^4})cos(nx\pi)+((-1)^n\bruch{1}{n\pi}+(-1)^n\bruch{6}{\pi^3n^3})sin(nx\pi) [/mm].
>
> Nun habe ich die 2 Stellen eingesetzt:
>
> F(0)=
> [mm]F(x)=\bruch{1}{8}+\summe_{n=1}^{\infty}\bruch{3((\pi^2n^2-2)(-1)^n+2)}{\pi^4n^4}=???[/mm]
> (1)
>
> F(1)=
> [mm]F(x)=\bruch{1}{8}+\summe_{n=1}^{\infty}\bruch{3((\pi^2n^2-2)(-1)^n+2)(-1)^n}{\pi^4n^4}=???[/mm]
> (2)
>
> Ich erkenne gleich, dass ich machen kann (1)+(2) nur ich
> weiß nicht was ich statt der Fragezeichen schreiben muss.
>
>
> Danke schön schonmal im Voraus
Das hatten wir doch schon mal.: https://matheraum.de/read?t=503662
Schau Dir mal meine Antwort von heute an. (Dirichletsche Regel)
FRED
|
|
|
|