www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Wert der Reihe berechnen
Wert der Reihe berechnen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wert der Reihe berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:43 Mo 17.06.2013
Autor: haner

Aufgabe
[mm] \summe_{i=1}^{\infty} \bruch{4}{\pi (2i-1)^2} [/mm]

Hallo,

wie berechnet man den Wert dieser Reihe?

MfG haner

        
Bezug
Wert der Reihe berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:53 Mo 17.06.2013
Autor: sometree

Hallo Haner,

ich nehme an der Wert von [mm] $\sum_{i=1}^\infty \frac{1}{i^2}$ [/mm] ist bekannt?

Ziehe alle möglichen Faktoren in deiner Summe vor die Summe und überlege dir was die entstehende Summe mit der obigen zu tun hat.

Bezug
                
Bezug
Wert der Reihe berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:48 Di 18.06.2013
Autor: haner

Ok,
also ich habe jetzt mal was vorgezogen:
Das ganze sieht jetzt so bei mir aus:

[mm] \bruch{4}{\pi}\summe_{i=1}^{\infty}\bruch{1}{4i^2-4i+1} [/mm]

Aber leider hilft mir das nichts???

MfG haner

Bezug
                        
Bezug
Wert der Reihe berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:01 Di 18.06.2013
Autor: Diophant

Hallo,

> Ok,
> also ich habe jetzt mal was vorgezogen:
> Das ganze sieht jetzt so bei mir aus:

>

> [mm]\bruch{4}{\pi}\summe_{i=1}^{\infty}\bruch{1}{4i^2-4i+1}[/mm]

>

> Aber leider hilft mir das nichts???

Das Ausmultiplizieren des Nenners hättest du dir sparen können. Anstatt dessen wäre es sicherlich hilfreich gewesen, du hättest dir einmal einige Reihenglieder aufgeschrieben.

Mache dir klar: die Reihe besteht jetzt genau aus denjenigen Stammbrüchen, deren Nenner die ungeraden Quadratzahlen durchlaufen. Zusammen mit sämtlichen geraden quadratischen Stammbrüchen hättest du eine Reihe mit bekanntem Grenzwert:

[mm] \sum_{i=1}^{\infty} \frac{1}{(2i-1)^2}+\sum_{i=1}^{\infty} \frac{1}{(2i)^2}=\sum_{i=1}^{\infty} \frac{1}{i^2}= \frac{\pi^2}{6} [/mm]

Und jetzt musst du dir noch klarmachen, welcher Zusammenhang zwischen

[mm] \sum_{i=1}^{\infty} \frac{1}{(2i)^2} [/mm]

und

[mm] \sum_{i=1}^{\infty} \frac{1}{i^2} [/mm]

besteht. Da hilft es ebenfalls, einen Faktor herauszuziehen...


Gruß, Diophant

Bezug
                                
Bezug
Wert der Reihe berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:28 Di 18.06.2013
Autor: haner

Ok, jetztkann ich das Ganze schon besser nachvollziehen.
Nur könnt Ihr mir bitte einmal erklären, warum
[mm] \sum_{i=1}^{\infty} \frac{1}{i^2}= \frac{\pi^2}{6} [/mm] ist?

Das mit den geraden und ungeraden Quadratzahlen habe ich verstanden.

Und jetzt musst du dir noch klarmachen, welcher Zusammenhang zwischen

$ [mm] \sum_{i=1}^{\infty} \frac{1}{(2i)^2} [/mm] $

und

$ [mm] \sum_{i=1}^{\infty} \frac{1}{i^2} [/mm] $

besteht. Da hilft es ebenfalls, einen Faktor herauszuziehen...

Aber was kann man denn hier rausziehen?

MfG haner

Bezug
                                        
Bezug
Wert der Reihe berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:37 Di 18.06.2013
Autor: M.Rex

Hallo

Dazu findest du unter folgendem Link sehr schöne Beweise:

twoplusonet.wordpress.com/2011/06/24/an-elegant-result/

Marius

Bezug
                                
Bezug
Wert der Reihe berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:44 Di 18.06.2013
Autor: haner

Ok, danke für den Link.
Aber nun zu dem Zusammenhang, den ich mir klar machen muss:

[mm] \sum_{i=1}^{\infty} \frac{1}{i^2} [/mm] -  [mm] \sum_{i=1}^{\infty} \frac{1}{(2i)^2} [/mm] = [mm] \sum_{i=1}^{\infty} \frac{1}{i^2} [/mm] - [mm] \bruch{1}{4} \sum_{i=1}^{\infty} \frac{1}{i^2} [/mm]

Da würde doch dann [mm] \bruch{\pi^2}{8} [/mm] rauskommen. Stimmt das?

MfG haner

Bezug
                                        
Bezug
Wert der Reihe berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:46 Di 18.06.2013
Autor: fred97


> Ok, danke für den Link.
>  Aber nun zu dem Zusammenhang, den ich mir klar machen
> muss:
>  
> [mm]\sum_{i=1}^{\infty} \frac{1}{i^2}[/mm] -  [mm]\sum_{i=1}^{\infty} \frac{1}{(2i)^2}[/mm]
> = [mm]\sum_{i=1}^{\infty} \frac{1}{i^2}[/mm] - [mm]\bruch{1}{4} \sum_{i=1}^{\infty} \frac{1}{i^2}[/mm]
>  
> Da würde doch dann [mm]\bruch{\pi^2}{8}[/mm] rauskommen. Stimmt
> das?

Ja

FRED

>  
> MfG haner


Bezug
                                                
Bezug
Wert der Reihe berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:49 Di 18.06.2013
Autor: haner

Ist dieses [mm] \bruch{\pi^2}{8} [/mm] dann die Lösung auf meine ursprüngliche Aufgabe?

MfG haner

Bezug
                                                        
Bezug
Wert der Reihe berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:54 Di 18.06.2013
Autor: Diophant

Hallo,

> Ist dieses [mm]\bruch{\pi^2}{8}[/mm] dann die Lösung auf meine
> ursprüngliche Aufgabe?

Nein. Deine ursprüngliche Reihe hatte ja noch einen Vorfaktor...

Gruß, Diophant

Bezug
                                                                
Bezug
Wert der Reihe berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:56 Di 18.06.2013
Autor: haner

Stimmt, dann kommt also endgültig [mm] \bruch{\pi}{2} [/mm] raus.

MfG haner

Bezug
                                                                        
Bezug
Wert der Reihe berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:00 Di 18.06.2013
Autor: Diophant

Hallo,

> Stimmt, dann kommt also endgültig [mm]\bruch{\pi}{2}[/mm] raus.

Ja, jetzt stimmt es. [ok]


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]