www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Wendepunkte
Wendepunkte < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wendepunkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:03 Mi 05.11.2008
Autor: Mandy_90

Aufgabe
Untersuchen sie die Graphen von f auf Wendepunkte.

a) [mm] f(x)=2*e^{x}-e^{-x} [/mm]

b) [mm] f(x)=(x^{2}-1)*e^{-0.5x} [/mm]

Hallo ^^

Ich hab hier ien kleines Problem bei der Aufgabe,könnt ihr mir weiterhelfen ?

a) [mm] f'(x)=2e^{x}+e^{-x} [/mm]

[mm] f''(x)=2e^{x}-e^{-x}=0 [/mm]

Ich krieg irgendwie die Nullstellen der zweiten Ableitung nicht raus,ich kann hier auch nix zusammenfassen ?

b) [mm] f'(x)=2x*e^{-0.5x}-0.5e^{-0.5x}*x^{2} [/mm]
[mm] f''(x)=-xe^{-0.5x}+0.5x^{2}*e^{-0.5x}=0 [/mm]
x=1

[mm] f'''(x)=0.5xe^{-0.5x}-0.25x^{2}*e^{-0.5x} [/mm]
f'''(2)=0  ---> kein Wendepunkt

lg


        
Bezug
Wendepunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 12:12 Mi 05.11.2008
Autor: angela.h.b.


> Untersuchen sie die Graphen von f auf Wendepunkte.
>  
> a) [mm]f(x)=2*e^{x}-e^{-x}[/mm]
>  
> b) [mm]f(x)=(x^{2}-1)*e^{-0.5x}[/mm]
>  
> Hallo ^^
>  
> Ich hab hier ien kleines Problem bei der Aufgabe,könnt ihr
> mir weiterhelfen ?
>  
> a) [mm]f'(x)=2e^{x}+e^{-x}[/mm]
>  
> [mm]f''(x)=2e^{x}-e^{-x}=0[/mm]
>  
> Ich krieg irgendwie die Nullstellen der zweiten Ableitung
> nicht raus,ich kann hier auch nix zusammenfassen ?

Hallo,

bedenke, daß [mm] e^{-x}=\bruch{1}{e^x}. [/mm]

Du möchtest jetzt also die Lösung von [mm] 2e^{x}-\bruch{1}{e^x}=0 [/mm]  finden.

Multipliziere mal alles mit [mm] e^x. [/mm] Dann weiter.


>  
> b) [mm]f'(x)=2x*e^{-0.5x}-0.5e^{-0.5x}*x^{2}[/mm]

Die Ableitung sieht mir falsch aus.

Es ist ja [mm] f(x)=(x^{2}-1)*e^{-0.5x} [/mm]   nach der Produktregel abzuleiten, also

[mm] f'(x)=(x^{2}-1)'*e^{-0.5x} [/mm] + [mm] (x^{2}-1)*(e^{-0.5x})' [/mm]

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]