www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mechanik" - Wellenberechnung
Wellenberechnung < Mechanik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mechanik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wellenberechnung: Ort-Zeit-Funktion aufstellen
Status: (Frage) beantwortet Status 
Datum: 21:02 Di 21.07.2009
Autor: RudiBe

Aufgabe
Für eine Welle gilt:  [mm] \eta [/mm] (t,x) = [mm] \eta_{m} [/mm] sin 2Pi [mm] (\bruch{t}{T}-\bruch{x}{\lambda}) [/mm]

Nach welcher Ort-Zeit-Funktion x(t) breitet sich die Bewegungsphase aus, in der sich das Teilchen an der Stelle [mm] x_{0} [/mm] zur Zeit [mm] t_{0} [/mm] befindet.

Gegeben: [mm] \lambda, [/mm] T, [mm] x_{0}= \bruch{\lambda}{2} [/mm] , [mm] t_{0}=\bruch{T}{4} [/mm]

irgendwie finde ich in keinem Lehrbuch nen Ansatz dazu.

Zu [mm] \lambda, [/mm] und Tau gibt es auch wiklich keine Werte.

Wie nun lösen?

rauskommen soll folgendes: x(t)= [mm] \bruch{\lambda}{T}*t+\bruch{\lambda}{4} [/mm]

Wer kann mir da helfen?


PS: ich habe diese Frage nur in diesem Forum gepostet.

        
Bezug
Wellenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:33 Di 21.07.2009
Autor: leduart

Hallo Rudi
Bei der so dargestellten Welle ist doch bei t=o und x=0 der Nulldurchgang. nunun musst du sie nur in x und t Richtung verschieben , sodass du dann
$ [mm] \eta_{m} [/mm] $ sin [mm] (2\pi [/mm] $ [mm] (\bruch{t}{T}-\bruch{x}{\lambda}))+\phi [/mm] $
hast.
wenn [mm] \phi=|pm\pi [/mm] oder [mm] \pm\pi/2 [/mm] ist kannst du [mm] \pm [/mm] cos oder -sin
ersetzen

gruss leduart

Bezug
                
Bezug
Wellenberechnung: danke erstmal ...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:54 Di 21.07.2009
Autor: RudiBe

Ich muss für heute Feierabend machen, morgen ist Physikklausur 2. Semester dran.
Ich danke allen bisherigen Unterstützern und werde mich der Aufgabe später wieder zuwenden.
Fürs Erste klingt Mr. Leduarts Beschreibung plausibel, aber ich kriegs heut nicht mehr gebacken.

Danke und Gruß
Rudi

Bezug
        
Bezug
Wellenberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:27 Di 21.07.2009
Autor: Franz1

In diesem Fall ist gefragt, wo sich die Phase [tex]\varphi(x_{0},t_{0})[/tex] wiederholt [tex]\varphi(x_{0},t_{0}) = \varphi(x,t) [/tex]. Mit den gegebenen Werten für [tex]x_{0}[/tex] und [tex]t_{0}[/tex] folgt das gewünschte.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mechanik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]