www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Welche Lösung ist richtig?
Welche Lösung ist richtig? < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Welche Lösung ist richtig?: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:46 Mi 13.08.2014
Autor: Teryosas

Hallo,
ich versuche eine Aufgabe zu lösen wo es um die Längenänderung eines Kegelstumpfes unter Zufkrafteinwirkung mit Hilfe eines Integrals geht.

Bis zu dem Punkt wo integriert, aber noch nicht eingesetzt wurde stimmt ich mit dem Lösungsweg meines Übungsleiters überein:
[mm] \Delta [/mm] l = [mm] \bruch{F}{E*\pi}*(\bruch{1}{(r_{2}-r_{1})}*\bruch{1}{r_{2}-\bruch{x}{l}*(r_{2}-r_{1}))}) [/mm] mit der oberen Grenze l und der unteren Grenze 0  (keine Ahnung wie man das hier einzeichnet).

Wenn ich nun die beiden Grenzen für x jeweils einsetze komme ich auf dieses Ergebnis:
[mm] \Delta [/mm] l = [mm] \bruch{F}{E*\pi*(r_{2}-r_{1})}*(\bruch{1}{r_{1}}-\bruch{1}{r_{2}}) [/mm]

Mein Übungsleiter kommt auf dieses ähnliche Ergebnis:
[mm] \Delta [/mm] l = [mm] \bruch{F*l}{E*\pi*(r_{2}-r_{1})}*(\bruch{1}{r_{1}}-\bruch{1}{r_{2}}) [/mm]

Wie man sieht spielt bei ihm das l noch immer eine Rolle.
Aber wie?
Wenn ich das l für x einsetze kürzen sich beide in dem Bruch und es kommt 1 raus.
Wenn ich 0 für x einsetze ergibt der Bruch 0.
Somit kann eigentlich kein l übrigbleiben oder übersehe ich etwas?

        
Bezug
Welche Lösung ist richtig?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:09 Mi 13.08.2014
Autor: Teryosas

Hat sich gerade erledigt.
Er hat ne Annahme falsch hingeschrieben oder ich falsch abgeschrieben die ich dann weiterverfolgt hab und somit fehlt bei mir das l

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]