www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Was ist eine Abbildung
Was ist eine Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Was ist eine Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:15 Mi 12.11.2008
Autor: nina1

Hallo,

also wenn ich zum Beispiel in einer Aufgabe stehen habe [mm] \IR^2 \to \IR^3 [/mm] heißt dies ja, dass Vektoren aus dem Raum [mm] \IR^2 [/mm] auf Vektoren aus dem Raum [mm] \IR^3 [/mm] abgebildet werden.

Nur was genau heißt das? Was ist eine Abbildung? Kann dann ein Vektor mit 2 Komponenten jetzt als Vektor mit 3 Komponenten dargestellt werden?

Und in dem Zusammenhang, wäre es ganz nett wenn jemand vielleicht noch sagen könnte, was dann "linear" bedeutet.

Lg.

        
Bezug
Was ist eine Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 Mi 12.11.2008
Autor: angela.h.b.


> Hallo,
>  
> also wenn ich zum Beispiel in einer Aufgabe stehen habe
> [mm]\IR^2 \to \IR^3[/mm] heißt dies ja, dass Vektoren aus dem Raum
> [mm]\IR^2[/mm] auf Vektoren aus dem Raum [mm]\IR^3[/mm] abgebildet werden.

Hallo,

ja, so ist es.

>  
> Nur was genau heißt das? Was ist eine Abbildung? Kann dann
> ein Vektor mit 2 Komponenten jetzt als Vektor mit 3
> Komponenten dargestellt werden?

Nein.

Eine Abbildung ist eine Zuordnung.

Wenn die Abbildung vom [mm] \IR^2 [/mm] in den [mm] \IR^3 [/mm] geht, wird jedem Vektor des [mm] \IR^3 [/mm] einer im [mm] \IR^3 [/mm] zugeordnet. man sagt: er wird darauf abgebildet.

In der Schule hattest Du es meist mit Abbildungen (Funktionen) zu tun, die reellen zahlen wieder reelle zahlen zugeordnet haben, z.B.

[mm] f:\IR\to \IR [/mm]
f(x):= [mm] x^2-5 [/mm]


Eine  Abbildung vom [mm] \IR^2 [/mm] in den [mm] \IR^3 [/mm] wäre z.B.

F:  [mm] \IR^2\to \IR^3 [/mm]

[mm] F(\vektor{x\\y}):=\vektor{2x+y^2-3\\ y*sin(x)\\ 5*e^{x+y}}. [/mm]



> Und in dem Zusammenhang, wäre es ganz nett wenn jemand
> vielleicht noch sagen könnte, was dann "linear" bedeutet.

Lineare Abbildungen sind Abbildungen mit bestimmten Eigenschaften, welche Du bitte in Deinen Unterlagen nachschlägst.
wenn Du das hast, kannst Du mal versuchen zu zeigen, daß

g:  [mm] \IR^2\to \IR^3 [/mm]

[mm] g(\vektor{x\\y}):=\vektor{2x+y\\ y\\ 5y} [/mm]  linear ist.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]