| Warum ist \IR^2 kein Körper < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe 
 
 
  |  |  
  | 
    
     | 
 | Aufgabe |  | Warum ist [mm] \IR^2 [/mm] zusammen mit der komponentenweisen Addition und Multiplikation kein Körper? | 
 
 
 Hallo,
 
 in der Lösung steht folgendes:
 
 [mm] \IR^{2}\backslash [/mm] {(0,0)} ist nicht gegen Multiplikation abgeschlossen:
 (1,0)*(0,1) = (0,0)
 
 Gut, das verstehe ich, aber wieso nimmt man hier [mm] \IR^{2}\backslash [/mm] {(0,0)}   an? [mm] \IR^2 [/mm] ist doch die Ebene und warum wird hier der Ursprung ,also (0,0) aus der Menge rausgenommen? Warum darf man das? (0,0) gehört doch zu [mm] \IR^2 [/mm] , so wie (0,0,0) zu [mm] \IR^3 [/mm] gehört. Warum gilt also [mm] \IR^{2}\backslash [/mm] {(0,0)}  ?
 
 
 Vielen Dank im Voraus.
 
 
 |  |  |  | 
 
  |  |  
  | 
    
     |  | Status: | (Antwort) fertig   |   | Datum: | 20:29 Mo 25.04.2016 |   | Autor: | leduart | 
 Hallo
 in einem Körper muss gelten a*b=0 folgt a=0 oder b=0
 man nimmt nicht (0,0)  raus sondern man kann 0 erreichen ohne dass es dazugehört.
 Gruß ledum
 
 
 |  |  | 
 |  | 
 
  |  |  
  | 
    
     |  | Status: | (Mitteilung) Reaktion unnötig   |   | Datum: | 22:54 Mo 25.04.2016 |   | Autor: | pc_doctor | 
 Achso, jetzt verstehe ich es. Alles klar, vielen lieben Dank.
 
 
 |  |  | 
 
 
 |