www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Wann ist f injektiv?
Wann ist f injektiv? < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wann ist f injektiv?: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:34 Mo 31.10.2011
Autor: TheBozz-mismo

Aufgabe
Für welche [mm] (\phi, \theta) \in \IR^2 [/mm] ist [mm] df_{\phi,\theta} [/mm] injektiv, wobei [mm] f(\phi, \theta)=(asin(\phi)cos(\theta),bsin(\phi)sin(\theta),ccos(\phi)), [/mm] mit a,b,c [mm] \not=0 [/mm] ?
Man beschreibe das Bild von f

Hallo!
Ich würde mal behaupten, dass das Differenzial für alle [mm] \phi [/mm] und für alle [mm] \theta \in \IR^2 [/mm] injektiv ist.
f abgeleitet nach [mm] \phi [/mm] lautet
[mm] f_{\phi}=(acos(\phi)cos(\theta),bcos(\phi)sin(\theta),-csin(\phi)) [/mm]
f abgeleitet nach [mm] \theta [/mm] lautet
[mm] f_{\theta}=(-asin(\phi)sin(\theta),bsin(\phi)cos(\theta),0) [/mm]

[mm] f_{\phi} [/mm] und [mm] f_{\theta} [/mm] sind linear unabhängig(Sieht man ja schon bei [mm] f_{\theta} [/mm] in der 3. Komponente, die 0 ist) und das ist ja äquivalent dazu, dass das Differenzial injektiv ist.

Das Bild von f: Naja, mich erinnert das ganz stark an Kugelkoordinaten.

Kann mir einer bei der Aufgabe helfen?

Gruß
TheBozz-mismo

        
Bezug
Wann ist f injektiv?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:49 Di 01.11.2011
Autor: TheBozz-mismo

Hallo
Ich habe noch eine weitere Frage zu dieser Aufgabe:
Bei Kugelkoordinaten gibt es ja immer 3 Variablen [mm] (\phi,\theta,r). [/mm] Hier gibt es aber nur die 2 Variabeln und das verwirrt mich etwas. Was bedeuten denn hier [mm] \phi [/mm] und [mm] \theta? [/mm]

Hat einer ne Idee für diese Aufgabe?

Gruß
TheBozz-mismo

Bezug
                
Bezug
Wann ist f injektiv?: Antwort
Status: (Antwort) fertig Status 
Datum: 10:32 Di 01.11.2011
Autor: donquijote


> Hallo
>  Ich habe noch eine weitere Frage zu dieser Aufgabe:
>  Bei Kugelkoordinaten gibt es ja immer 3 Variablen
> [mm](\phi,\theta,r).[/mm] Hier gibt es aber nur die 2 Variabeln und
> das verwirrt mich etwas. Was bedeuten denn hier [mm]\phi[/mm] und
> [mm]\theta?[/mm]
>  
> Hat einer ne Idee für diese Aufgabe?
>  
> Gruß
>  TheBozz-mismo

Für den Fall a=b=c=r liefert die Funktion ja gerade die Kugelkoordinaten mit festem r, das Bild von f ist also eine Kugeloberfläche.
Für allgemeinere a,b,c mit a,b,c>0 wird daraus die Oberfläche eins Ellipsoids.
Es empfiehlt sich also, sich erstmal ein Bild zu machen, was die Abbildung geometrisch tut und sich dann an die Lösung der Aufgabe zu machen.


Bezug
        
Bezug
Wann ist f injektiv?: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:24 Mi 02.11.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]