www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Wahrscheinlichkeitsrechnung
Wahrscheinlichkeitsrechnung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsrechnung: Anwendungsaufgabe
Status: (Frage) beantwortet Status 
Datum: 15:52 Do 04.07.2013
Autor: Summer1990

Die Wahrscheinlichkeit, dass ein Seismometer erste Anzeichen eines schweren Erdbebens registriert beträgt 70%. Zudem besteht eine Wahrscheinlichkeit von 20%, dass das Gerät auch dann Alarm ausläst, wenn seismische Signale auftreten, die kein schweres Erdbeben ankündigen.

Unabhängig vom Auftreten seismischer Wellen beträgt in einem erdbebengefährdeten Gebiet die Wahrscheinlichkeit, dass innerhalb eines Jahres ein schweres Beben auftritt, 10%.

a) In der Zentrale wird eine Alarmmeldung empfangen. Wie hoch ist die Wahrscheinlichkeit, dass ein schweres Erdbeben unmittelbar bevorsteht?

zu a):

A= Alarm [mm] \overline{A} [/mm] = Fehlalarm K = Kein Alarm E= Erdbeben

P(A) = 0,7    P [mm] \overline{A}= [/mm] 0,2    P(K) = 0,3    P(E)= 0,1

Wahrscheinlichkeit, dass Alarm ausgelöst wird und Erdbeben auftritt
P(A [mm] \cap [/mm] E) = 0,07

Wahrscheinlichkeit, dass kein Alarm ausgelöst wird und Erdbeben auftritt
P(K [mm] \cap [/mm] E) = 0,03

Wahrscheinlichkeit, dass es einen Fehlalarm gibt (kein Erdbeben)

[mm] P(\overline{A} \cap \overline{E}) [/mm] = 0,18

--> 0,07 + 0,03 + 0,18 = 0,28= 28%

Nach langem überlegen habe ich die Aufgabe so gelöst; meine Frage nun: Ist die Aufgabe richtig gelöst und gibt es eventuell einen einfacheren oder eindeutigeren Lösungsweg???lg

        
Bezug
Wahrscheinlichkeitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:53 Do 04.07.2013
Autor: Diophant

Hallo,

> Die Wahrscheinlichkeit, dass ein Seismometer erste
> Anzeichen eines schweren Erdbebens registriert beträgt
> 70%. Zudem besteht eine Wahrscheinlichkeit von 20%, dass
> das Gerät auch dann Alarm ausläst, wenn seismische
> Signale auftreten, die kein schweres Erdbeben ankündigen.

>

> Unabhängig vom Auftreten seismischer Wellen beträgt in
> einem erdbebengefährdeten Gebiet die Wahrscheinlichkeit,
> dass innerhalb eines Jahres ein schweres Beben auftritt,
> 10%.

>

> a) In der Zentrale wird eine Alarmmeldung empfangen. Wie
> hoch ist die Wahrscheinlichkeit, dass ein schweres Erdbeben
> unmittelbar bevorsteht?

>

> zu a):

>

> A= Alarm [mm]\overline{A}[/mm] = Fehlalarm K = Kein Alarm E=
> Erdbeben

>

> P(A) = 0,7 P [mm]\overline{A}=[/mm] 0,2 P(K) = 0,3 P(E)=
> 0,1

>

> Wahrscheinlichkeit, dass Alarm ausgelöst wird und Erdbeben
> auftritt
> P(A [mm]\cap[/mm] E) = 0,07

>

> Wahrscheinlichkeit, dass kein Alarm ausgelöst wird und
> Erdbeben auftritt
> P(K [mm]\cap[/mm] E) = 0,03

>

> Wahrscheinlichkeit, dass es einen Fehlalarm gibt (kein
> Erdbeben)

>

> [mm]P(\overline{A} \cap \overline{E})[/mm] = 0,18

>

> --> 0,07 + 0,03 + 0,18 = 0,28= 28%

>

> Nach langem überlegen habe ich die Aufgabe so gelöst;
> meine Frage nun: Ist die Aufgabe richtig gelöst...

Ganz einfach: die Aufgabe ist gar nicht gelöst. Du hast sie wohl auch falsch verstanden. Es geht nicht einfach nur um die Wahrscheinlichkeit [mm] P(A\cap{E}), [/mm] sondern um die bedingte Wahrscheinlichkeit P(E|A). Es soll also unter der Bedingung, dass Alarm ausgelöst wurde, die Wahrscheinlichkeit bestimmt werden, dass tatsächlich ein Erdbeben stattgefunden hat bzw. noch stattfinden wird.

Entweder dir ist der Begriff der bedingten Wahrscheinlichkeit geläufig, dann solltest du mit diesem Hinweis klarkommen. Sonst würde ich dir empfehlen, das ganze mit einer Vierfeldertafel anzugehen.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]