www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Wahrscheinlichkeitsraum
Wahrscheinlichkeitsraum < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsraum: Bitte um Hilfe
Status: (Frage) beantwortet Status 
Datum: 16:27 Do 04.11.2004
Autor: Cristabell

Ich habe diese Frage in keinem anderen Forum gestellt.

Hi Leute,

ich sitz mal wieder mit Null Ahnung vor ner Aufgabe und komm nich weiter... Es geht irgendwie um Wahrscheinlichkeitsraeume, aber da hoerts mit dem Verstaendnis dann auch schon auf -.- Waere nett, wenn ihr mir wieder behilflich sein koenntet...

Aufgabe:
Sei Omega definiert als {1,2,3,...,k}, wobei k eine Primzahl ist, F := P(Omega) und sei P die Gleichverteilung auf Omega.
Zeigen Sie: Wenn A,B [mm] \in [/mm] F unabhaengig sind, so ist A [mm] \in [/mm] { [mm] \emptyset [/mm] , Omega } oder B [mm] \in [/mm] { [mm] \emptyset [/mm] , Omega }

Ich dank euch schon mal im Vorraus.

Gruss Cristabell / Micha

        
Bezug
Wahrscheinlichkeitsraum: Antwort
Status: (Antwort) fertig Status 
Datum: 16:48 Do 04.11.2004
Autor: Marc

Hallo Micha,

> Aufgabe:
>  Sei Omega definiert als {1,2,3,...,k}, wobei k eine
> Primzahl ist, F := P(Omega) und sei P die Gleichverteilung
> auf Omega.
>  Zeigen Sie: Wenn A,B [mm]\in[/mm] F unabhaengig sind, so ist A [mm]\in[/mm]
> [mm] $\{ \emptyset , \Omega \}$ [/mm] oder B [mm]\in[/mm] [mm] $\{ \emptyset, \Omega \}$ [/mm]

Hier mal ein paar Tipps.
A und B sollen unabhängig sein, also gilt [mm] $P(A\cap [/mm] B)=P(A)*P(B)$.
P ist die Gleichverteilung, deswegen gilt [mm] $P(\{n\})=\bruch{1}{k}$ [/mm] (jedes Element ist gleichwahrscheinlich).
Für eine Menge A haben wir deswegen die W'keit [mm] $P(A)=\bruch{|A|}{k}$ [/mm] (also die Anzahl der Elemente der Menge durch die Gesamtanzahl).
Die Teilbarkeitslehre ganzer Zahlen liefert $p=a*b$, p prim [mm] $\Rightarrow$ [/mm] p teilt a oder p teilt b.
Es gilt sogar: $p=a*b$, p prim, [mm] $a,b\le [/mm] p$ [mm] $\Rightarrow$ [/mm] a=p oder b=p.

All das kannst du nun in die Gleichung [mm] $P(A\cap [/mm] B)=P(A)*P(B)$ einsetzen, mutliplizierst einmal mit k und nutzt dann aus, die Prim-Eigenschaft von k aus.

Viel Spaß,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]