www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Wahrscheinlichkeit
Wahrscheinlichkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit: Aufgabe mit Fragen
Status: (Frage) beantwortet Status 
Datum: 14:31 So 20.05.2012
Autor: hilado

Aufgabe
Am Samstagabend sind auf Deutschlands Straßen in der Regel 2% der Autofahrer betrunken unterwegs (mit mehr als 0.5 Promille Blutalkoholspiegel). Ein Alkoholtest zeigt bei 99% der betrunkenen, aber auch bei 2% der nüchternen Probanden eine Reaktion.

1. Mit welcher Wahrscheinlichkeit ist ein an einem Samstagabend willkürlich herausgegriffener Autofahrer, bei dem der Test eine Reaktion zeigt, auch wirklich betrunken?

2. Mit welcher Wahrscheinlichkeit ist ein an einem Samstagabend willkürlich herausgegriffener Autofahrer, bei dem der Test keine Reaktion zeigt, auch wirklich nüchtern?

Also ich weiß nicht genau, wie ich da anfangen soll. Ich habe mir folgendes gedacht:

Zur Frage 1:

a. Wie wahrscheinlich ist es, dass die herausgegriffene Person wirklich betrunken ist: 2% = 0,02
b. Wie wahrscheinlich ist es, dass bei der Person der Test auch positiv ausfällt? 0,99
c. Jetzt mulitplizier ich die beiden und fertig is. Aber ich bin mir nicht sicher, ob dass der richtige Weg ist...
Die Lösung wäre dann 0,0198.

Falls das nicht richtig ist, wie soll ich an die Aufgabe rangehen?

        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:40 So 20.05.2012
Autor: Diophant

Hallo,

> Also ich weiß nicht genau, wie ich da anfangen soll. Ich
> habe mir folgendes gedacht:
>
> Zur Frage 1:
>
> a. Wie wahrscheinlich ist es, dass die herausgegriffene
> Person wirklich betrunken ist: 2% = 0,02
> b. Wie wahrscheinlich ist es, dass bei der Person der Test
> auch positiv ausfällt? 0,99
> c. Jetzt mulitplizier ich die beiden und fertig is. Aber
> ich bin mir nicht sicher, ob dass der richtige Weg ist...
> Die Lösung wäre dann 0,0198.
>
> Falls das nicht richtig ist, wie soll ich an die Aufgabe
> rangehen?

Es ist falsch. Auf deine Frage kann man mit dem Stichwort Bedingte Wahrscheinlichkeit antworten.

Wenn ihr das noch nicht gelernt habt, so hilft dir am besten eine Vierfeldertafel weiter.

Die Begründung, weshalb dein Ansatz falsch ist, ist übrigens eine recht einfache: die beiden Eregnisse:

A: Alkoholtest ist positiv
B: Autofahrer ist betrunken / hat einen zu hohen Alkoholspiegel

sind stochastisch abhängig, die Multiplikationsregel gilt somit nicht.


Gruß, Diophant

Bezug
                
Bezug
Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:10 So 20.05.2012
Autor: hilado

OK, danke. Jetzt hab ich mal ein bisschen gerechnet und folgendes Ergebnis herausbekommen:

Noch zur Info: Ich hab das [mm] \neg [/mm] als die Komplementmenge genommen weil ich hier nicht das Zeichen gefunden hab ...
Ereignisdefinition: N = nüchtern, [mm] \neg [/mm] N = betrunken
P = Test positiv, [mm] \neg [/mm] P = Test negativ.

P(P) = [mm] \bruch{101}{200}, P(\neg [/mm] P) = [mm] \bruch{99}{200} [/mm]
P(N) = [mm] \bruch{100}{200}, P(\neg [/mm] N) = [mm] \bruch{100}{200} [/mm]

P(N [mm] \cap [/mm] P) = [mm] \bruch{2}{200} [/mm]
P(N [mm] \cap \neg [/mm] P) = [mm] \bruch{98}{200} [/mm]
[mm] P(\neg [/mm] N [mm] \cap [/mm] P) = [mm] \bruch{99}{200} [/mm]
[mm] P(\neg [/mm] N [mm] \cap \neg [/mm] P) = [mm] \bruch{1}{200} [/mm]

Dann einfach die bedingte Wahrscheinlichkeit genommen mit folgender Formel:

für 1: P(P) * [mm] P_{P}(\neg [/mm] N) = P(P [mm] \cap \neg [/mm] N) und dann umgeformt. Dann habe ich für [mm] P_{P}(\neg [/mm] N) = [mm] \bruch{99}{101} [/mm]

für 2: [mm] P_{\neg P} [/mm] (N) = [mm] \bruch{98}{99} [/mm]

Bezug
                        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:52 Mo 21.05.2012
Autor: Diophant

Hallo Hilado,

deine Rechnung ist schwer nachvollziehbar, und dein Eregbins zu Frage 1 ist m.A. falsch. Das geht damit los, dass im Nenner deiner Wahrscheinlichkeiten 200 steht, wie kommst du dazu?

Schau dir mal die Ausgangssituation nochmals an, dann sollte dir zumindest klar werden, dass im ersten Fall eine relativ kleine Wahrscheeinlichkeiten knapp oberhalb von 2% herauskommen sollte.

Nichtsdestotrotz: zu Frage 2 erhalte ich das gleiche Ergebnis wie du, magst du deine Rechenwege bzw. deine Ausganzgszahlen nochmal erläutern?


Gruß, Diophant

Bezug
        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 So 20.05.2012
Autor: M.Rex

Hallo

Wie Diophant schon schrieb, brauchst du hier die MBVierfeldertafel


T: Test schlägt an
B: Proband ist betrunken.

[mm] \vmat{\Box&T&\overline{T}&\summe\\ B&P(T\cap B)&P(\overline{T}\cap B)&P(B)\\ \overline{B}&P(T\cap \overline{B})&P(\overline{T}\cap \overline{B})&P(\overline{B})\\ \summe&P(T)&P(\overline{T})&\green{100\%}} [/mm]

Mit deinen Werten
[mm] \vmat{\Box&T&\overline{T}&\summe\\ B&0,02\cdot(1-0,02)&P(\overline{T}\cap B)&0,02\\ \overline{B}&0,99\cdot0,02&P(\overline{T}\cap \overline{B})&P(\overline{B})\\ \summe&P(T)&P(\overline{T})&\green{100\%}} [/mm]

Marius


Bezug
                
Bezug
Wahrscheinlichkeit: Vierfeldertafel: Wert unklar
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:54 Mo 21.05.2012
Autor: Diophant

Hallo Marius,

wie kommst du auf den Wert für [mm] P(T\cap\overline{B})? [/mm] Insbesondere die 99% kann ich an dieser Stelle nicht nachvollziehen.

Gruß, Diophant

Bezug
                        
Bezug
Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:01 Mo 21.05.2012
Autor: M.Rex


> Hallo Marius,
>  
> wie kommst du auf den Wert für [mm]P(T\cap\overline{B})?[/mm]
> Insbesondere die 99% kann ich an dieser Stelle nicht
> nachvollziehen.
>  
> Gruß, Diophant

Sorry, ich habe Betrunken/Nicht betrunken verwechselt:
Korrekt sollte folgendes sein:

[mm] \vmat{\Box&T&\overline{T}&\summe\\ B&0,02\cdot 0,99&P(\overline{T}\cap B)&0,02\\ \overline{B}&0,98\cdot0,02&P(\overline{T}\cap \overline{B})&0,98\\ \summe&P(T)&P(\overline{T})&\green{100\%}} [/mm]

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]