www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Wahrscheinlichkeit
Wahrscheinlichkeit < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:52 Fr 20.04.2012
Autor: handballer1988

Aufgabe
Lastwagen einer bestimmten Marke haben im Durchschnitt in den ersten drei Jahren auf 50 000 gefahrenen Kilometern eine Panne! (Achtung: Pannen, welche die gleiche Ursache haben, werden nur einmal gezählt!)
Wie großß ist die Wahrscheinlichkeit, dass bei einer Fahrt über 500 km mindestens eine Panne bzw. genau zwei Pannen auftretten??

Hallo liebes Forum!

Ich bin neu hier und hoffe, ihr könnt mir bei dieser Aufgabe helfen!

Ich finde einfach nicht heraus, nach welcher Warscheinlichkeitsverteilung ich diese Aufgabe lösen soll!

Ich bin ja der Meinung, dass ich es über die Binomialverteilung rechnen sollte, komme aber leider auf kein vernünftiges Ergebnis!

Vielen Dank für eure Hilfe!



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 Fr 20.04.2012
Autor: tobit09

Hallo handballer und herzlich [willkommenmr]!


> Ich finde einfach nicht heraus, nach welcher
> Warscheinlichkeitsverteilung ich diese Aufgabe lösen
> soll!

Hier geht es um die Anzahl seltener Ereignisse in gewissen Zeiträumen. Da bietet sich die Poisson-Verteilung an...


Viele Grüße
Tobias

Bezug
                
Bezug
Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:30 Fr 20.04.2012
Autor: handballer1988

Hallo!

Vielen vielen Dank für die schnelle Antwort!

Habe dies nun auf folgendem Wege versucht:

[mm] \lambda [/mm] = n*p = 500 * 0,01
[mm] \lambda [/mm] =5

[mm] P_{mindestens eine Panne} [/mm] = [mm] 1-P_{keine Panne} [/mm] = 1- [mm] (\bruch{5^0}{0!}*e^{-5} [/mm]
[mm] P_{mindestens eine Panne} [/mm] = 0,9932 = 99,33 %.

[mm] P_{genau zwei Panne} [/mm] = [mm] (\bruch{5^2}{2!}*e^{-5} [/mm]
[mm] P_{genau zwei Panne} [/mm] = 0,08422 = 8,422 %.

Stimmt diese Rechnung??

DANKE

Bezug
                        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 Fr 20.04.2012
Autor: tobit09


> [mm]\lambda[/mm] = n*p = 500 * 0,01

[mm] $\lambda$ [/mm] ist der Erwartungswert der Poisson-Verteilung zum Parameter [mm] $\lambda$. [/mm] Er gibt also die mittlere Anzahl der eintretenden Pannen an. Also [mm] $\lambda=\bruch{500}{50000}=0,01$. [/mm]

> [mm]P_{mindestens eine Panne}[/mm] = [mm]1-P_{keine Panne}[/mm] = 1-
> [mm](\bruch{5^0}{0!}*e^{-5}[/mm]
>  [mm]P_{mindestens eine Panne}[/mm] = 0,99323 = 99,33 %.
>  
> [mm]P_{genau zwei Panne}[/mm] = [mm](\bruch{5^2}{2!}*e^{-5}[/mm]
>  [mm]P_{genau zwei Panne}[/mm] = 0,08422 = 8,422 %.

Bis auf die falsche Wahl von [mm] $\lambda$ [/mm] stimmt die Rechnung!

(Dass bei einer Fahrt von 500km wohl kaum mit ca. 99% Wahrscheinlichkeit mindestens eine Panne auftritt, wenn im Schnitt pro 50000km 1 Panne auftritt, sollte plausibel sein.)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]