www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Wahrscheinlichkeit
Wahrscheinlichkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:39 Sa 21.10.2006
Autor: bobby

Hallo!

Kann mir vielleicht jemand bei dieser Aufgabe helfen??

Seien $A,B [mm] \in \varepsilon$ [/mm] (ich glaube, dass soll eine Sigma-Algebra sein), [mm] $P(A)=\bruch{3}{4}$ [/mm] und [mm] $P(B)=\bruch{1}{3}$. [/mm]
Zeige: [mm] $\bruch{1}{12} \le P(A\cap [/mm] B) [mm] \le \bruch{1}{3}$ [/mm] und finde Beispiele, wo Gleichheit gilt. Analoge Schranken für [mm] $A\cup [/mm] B$.

Also mir sind diese Wahrscheinlichkeiten irgendwie etwas unklar und mir fällt auch irgendwie kein anschauliches Beispiel zu dieser Aufgabe ein...



        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:09 Sa 21.10.2006
Autor: Zwerglein

Hi, Bobby,

> Seien [mm]A,B \in \varepsilon[/mm] (ich glaube, dass soll eine
> Sigma-Algebra sein), [mm]P(A)=\bruch{3}{4}[/mm] und
> [mm]P(B)=\bruch{1}{3}[/mm].
>  Zeige: [mm]\bruch{1}{12} \le P(A\cap B) \le \bruch{1}{3}[/mm] und
> finde Beispiele, wo Gleichheit gilt. Analoge Schranken für
> [mm]A\cup B[/mm].
>  
> Also mir sind diese Wahrscheinlichkeiten irgendwie etwas
> unklar und mir fällt auch irgendwie kein anschauliches
> Beispiel zu dieser Aufgabe ein...

Also: Bei so einer Aufgabenstellung denkt man zunächst mal an das Urnenmodell.
Und wenn man sich die vorgegebenen Zahlen mal anschaut, dann kommt man auf eine Urne mit 12 Kugeln, durchnummeriert von 1 bis 12. Aus dieser Urne wird eine Kugel gezogen.
Dann kann man z.B. für A ein Ereignis mit 9 Kugeln (P(A) = [mm] \bruch{9}{12} [/mm] = [mm] \bruch{3}{4}) [/mm] nehmen, für B ein Ereignis mit 4 Kugeln.

Nun zu den verlangten "Gleichheiten" in der Ungleichungskette oben:

(1) [mm] P(A\cap [/mm] B) = [mm] \bruch{1}{12}. [/mm]
Das heißt halt, dass A und B in unserem Fall genau ein gemeinsames Element haben müssen.
Z.B.: A = [mm] \{1; 2; .....; 9 \} [/mm]
B = [mm] \{9; 10; 11; 12 \} [/mm]

(2) [mm] P(A\cap [/mm] B) = [mm] \bruch{1}{3}. [/mm]
Das heißt, dass B eine Teilmenge von A sein muss:
Z.B.: A = [mm] \{1; 2; .....; 9 \} [/mm]
B = [mm] \{1; 2; 3; 4 \} [/mm]

mfG!
Zwerglein


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]