www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Wahrscheinlichkeit.
Wahrscheinlichkeit. < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:45 So 05.02.2006
Autor: philipp-100

Hallo,

war leider die ersten beiden Stunden krank in denen wir unser neues Thema besprochen haben , deswegen bräuchte ich ein bischen Hilfe.

Aufgabe:Ein würfel wird dreimal geworfen ,Bestimme die Wahrscheinlichkeit der Ereignisse.

c)  Augenzahl 2 tritt höchstens zwei mal auf.
d) Augenzahl 4 tritt mindestenseinmal auf.


zu c)das heisst ja , dass die 2 auch einmal oder keinmal auftreten kann.
      Also : Ich muss die wahrscheinlichkeit für keinmal 2 ausrechen, für einmal 2 und für 2 mal 2 ausrechnen.
Und dann alle Wahrscheinlichkeiten addieren.

1) für keinmal 2 = die wahrscheinlichkeit bei einem wurf das die 2 nicht auftritt liegt bei 5/6 !
Also bei 3 Würfen = [mm] (5/6)^3 [/mm] richtig ?


Bitte guckt euch das was ich bis jetzt geschrieben habe mal an und sagt ob es richtig ist.
Wenn es richtig ist schreibe ich dann auch meinen weiteren Lösungsweg auf.
Danke und viele Grüße

Philipp
      

        
Bezug
Wahrscheinlichkeit.: Antwort
Status: (Antwort) fertig Status 
Datum: 21:08 So 05.02.2006
Autor: Yuma

Hallo Philipp,

alles, was du geschrieben hast, ist richtig, allerdings würde man bei diesen zwei Aufgaben normalerweise einen anderen Weg gehen:

Und zwar kann man hier einfacher mit der Gegenwahrscheinlichkeit argumentieren.

Das bedeutet z.B.: Die W., mit einem Würfel eine Sechs zu würfeln ist [mm] $p=\bruch{1}{6}$. [/mm] Also ist die W., KEINE Sechs zu würfeln, einfach [mm] $1-p=\bruch{5}{6}$. [/mm] Diese W. kann man also sofort angeben, ohne mühsam die W. für eine Eins, für eine Zwei, für eine Drei, für eine Vier und für eine Fünf zu addieren.

Und jetzt überleg mal: Was wäre jeweils das Gegenereignis zu den Ereignissen, dessen W. du berechnen sollst?

Die W. des Gegenereignisses (die Gegenwahrscheinlichkeit) lässt sich hier sehr leicht angeben. Und damit hast du dann auch sofort die eigentlich gesuchte W.

Alles klar? Ansonsten bitte nochmal nachfragen!

MFG,
Yuma

Bezug
                
Bezug
Wahrscheinlichkeit.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:25 So 05.02.2006
Autor: philipp-100

Ich schreibe nochmal alles:

Hallo,

war leider die ersten beiden Stunden krank in denen wir unser neues Thema besprochen haben , deswegen bräuchte ich ein bischen Hilfe.

Aufgabe:Ein würfel wird dreimal geworfen ,Bestimme die Wahrscheinlichkeit der Ereignisse.

c)  Augenzahl 2 tritt höchstens zwei mal auf.
d) Augenzahl 4 tritt mindestenseinmal auf.


zu c)das heisst ja , dass die 2 auch einmal oder keinmal auftreten kann.
      Also : Ich muss die wahrscheinlichkeit für keinmal 2 ausrechen, für einmal 2 und für 2 mal 2 ausrechnen.
Und dann alle Wahrscheinlichkeiten addieren.

1) für keinmal 2 = die wahrscheinlichkeit bei einem wurf das die 2 nicht auftritt liegt bei 5/6 !
Also bei 3 Würfen = [mm] (5/6)^3 [/mm] richtig ?

Ich weiß aber nicht wie ich die Wahrscheinlichkeit ausrechnen soll wenn die 2 einmal oder zweimal auftriit.
Vielleicht so ??

Bei einmal 2 bei 3 Würfen :  ich würfele ja 3 mal also müsste die wahrscheinlichkeit dann doch 1/16 liegen oder ?




      


Bezug
                        
Bezug
Wahrscheinlichkeit.: Antwort
Status: (Antwort) fertig Status 
Datum: 21:37 So 05.02.2006
Autor: Yuma

Hallo Philipp,

warum ignorierst du denn meine erste Antwort?? ;-)

Zu deiner zweiten Frage:

Wie groß ist die W., dass man bei drei Würfen genau 1 mal eine Zwei würfelt?

Nun, dazu hat man ja genau drei Möglichkeiten:
1. Man würfelt im 1. Wurf eine Zwei und beim 2. und 3. Wurf KEINE Zwei: [mm] $p_{1}=\bruch{1}{6}\cdot\bruch{5}{6}\cdot\bruch{5}{6}=\bruch{25}{216}$ [/mm]
2. Man würfelt im 2. Wurf eine Zwei und beim 1. und 3. Wurf KEINE Zwei: [mm] $p_{2}=\bruch{5}{6}\cdot\bruch{1}{6}\cdot\bruch{5}{6}=\bruch{25}{216}$ [/mm]
3.  Man würfelt im 3. Wurf eine Zwei und beim 1. und 2. Wurf KEINE Zwei: [mm] $p_{3}=\bruch{5}{6}\cdot\bruch{5}{6}\cdot\bruch{1}{6}=\bruch{25}{216}$ [/mm]

Die W., in drei Würfen genau einmal eine Zwei zu würfeln, ist also [mm] $p=p_{1}+p_{2}+p_{3}=3\cdot\bruch{25}{216}=\bruch{25}{72}$. [/mm]

Probier du das doch jetzt mal für die W., in drei Würfen genau zweimal eine Zwei zu würfeln...

(Habt ihr evtl. die Binomialkoeffizienten schon gehabt? Damit ginge das alles etwas schneller?)

MFG,
Yuma

Bezug
                                
Bezug
Wahrscheinlichkeit.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:47 So 05.02.2006
Autor: philipp-100

Danke Yuma,

ok jetzt hab ich es ja sehr einfach .

P1 = 1/6 *1/6* 5/6
P2 = 1/6*5/6*1/6
P3 = 5/6*1/6*1/6   =5/216


P=P1+P2+P3 = 3*5/216   =5/72

Dann muss ich nurnoch alle ergebnisse addieren oder ?






Bezug
                                        
Bezug
Wahrscheinlichkeit.: Antwort
Status: (Antwort) fertig Status 
Datum: 21:51 So 05.02.2006
Autor: Yuma

Hallo Philipp,

ja, das ist richtig!

Überprüf das Ergebnis anschließend aber auch mal mit dem Wert, den du aus der Betrachtung der Gegenwahrscheinlichkeit erhältst. (Oder hast du nicht verstanden, was ich in meiner ersten Antwort geschrieben habe?)

MFG,
Yuma

Bezug
                                                
Bezug
Wahrscheinlichkeit.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:08 So 05.02.2006
Autor: philipp-100

hey doch danke

1 ist die absolute wahrscheinlichkeit wenn ich dann 1-mein ergebniss hbe ich den gegenwert

Bezug
                                                        
Bezug
Wahrscheinlichkeit.: Antwort
Status: (Antwort) fertig Status 
Datum: 22:19 So 05.02.2006
Autor: Yuma

Hallo Philipp,

ich bin mir nicht ganz sicher, ob du verstanden hast, was ich meine.

Nehmen wir nochmal Beispiel c). Du möchtest die Wahrscheinlichkeit ausrechnen, dass bei drei Würfen höchstens zweimal die Zwei gewürfelt wird.

Das Gegenereignis wäre: Die Zwei wird in drei Würfen dreimal gewürfelt. Die Wahrscheinlichkeit dafür ist [mm] $p=\left(\bruch{1}{6}\right)^{3}=\bruch{1}{216}$. [/mm]

D.h. die Wahrscheinlichkeit, dass bei drei Würfen höchstens zweimal die Zwei gewürfelt wird, beträgt gerade [mm] $1-p=\bruch{215}{216}$. [/mm]

Verstehst du, was ich meine? Du hättest dir das Berechnen der Einzelwahrscheinlichkeiten sparen und sofort das Ergebnis angeben können. (Stimmt dein mühsam errechnetes Ergebnis damit überein? ;-) )

Mach das doch mal mit der zweiten Aufgabe, also bestimme das Gegenereignis, seine Wahrscheinlichkeit $p$ und bilde dann $1-p$.

Auf diese Weise kannst du viel unnötige Rechnerei ersparen!

MFG,
Yuma

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]