www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Wachstums-Aufgabe
Wachstums-Aufgabe < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wachstums-Aufgabe: Stimmt meine Lösung?
Status: (Frage) beantwortet Status 
Datum: 21:11 Do 12.10.2006
Autor: Marion_

Aufgabe
Beim Lösen von Kochsalz in destilliertem Wasser beschreibt die Funktion f (in g) die zur Zeit t bereits gelöste Menge an Kochsalz. Die gelöste Salzmenge kann einen bestimmten Wert [mm] m_0, [/mm] die Sättigungsgrenze, nicht überschreiten. Beobachtungen haben gezeigt, dass die Geschwindigkeit, mit der sich f(t) ändert, nährungsweise proportional zur Menge des noch lösbaren Salzes ist.

a) Bestimmen Sie den Funktionsterm f(t), wenn für t=0 noch kein Kochsalz in 100g destilliertem Wasser gelöst war, nach 30 min aber 28g.

b) Stellen Sie die zugehörige Differentialgleichung auf, wenn die Sättigungsgrenze bei 100g destilliertem Wasser 36 g Kochsalz beträgt.

Hallo,
im Original war die Reihenfolge der Teilaufgaben andersrum, aber da ich sie so behandelt habe, habe ich die Reihenfolge einfach vertauscht.
Würde mich freuen, wenn jemand da mal drüberschauen könnte, bin mir nicht sicher, ob es stimmen kann.
Danke.
Gruß,
Marion.

Meine Lösung:
a)
Es handelt sich um beschränktes Wachstum. Die Formel dafür ist:
f(t)= [mm] S-c*e^{-k*t} [/mm]

S= 36
m(0)= 0
m(30)= 28

m(0)= [mm] 36-c*e^0=0 [/mm]
-c=-36
--> c=36

m(30)= [mm] 36-36*e^{-30k}= [/mm] 28
[mm] -36e^{-30k}=28-36 [/mm]
[mm] -36e^{-30k}=-8 [/mm]
[mm] e^{-30k}=8/36 [/mm]
[mm] e^{-30k}=2/9 [/mm]
-30k=ln2/9
k=(ln2/9)/(-30)
k= 0,0501

b) f'(t)= k*(S-f(t))
f'(t)=0,0501*(36-f(t))



        
Bezug
Wachstums-Aufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:13 Do 12.10.2006
Autor: Marion_

Hi,
noch eine kleine Ergänzung zur Teilaufgabe a)

die fertige Formel sieht dann natürlich so aus:
f(t)= [mm] 36-36e^{-0,0501*t} [/mm]

Marion.

Bezug
        
Bezug
Wachstums-Aufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 00:21 Fr 13.10.2006
Autor: leduart

Hallo Marion
Ich hab keinen Fehler in deinm vorgehen gefunden.
Nur wenn b) eigentlich die erste Aufgabe war, kannst du nur die allgemeine Diferentialgl. hinschreiben, statt S   mo wie im Text.
erst im zweiten Teil solltest du dann eigentlich die Dgl lösen, bzw. zeigen, dass deine Funktion nämlich [mm] f=mo-C*e^{-k*t} [/mm] diese Dgl erfüllt. aus den angegebenen Bedingungen dann C und k berechnen . Aber der Rechenweg bleibt dafür natürlich derselbe.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]