www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - W'dichte von X+Y bestimmen
W'dichte von X+Y bestimmen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

W'dichte von X+Y bestimmen: Korrektur, Tipp
Status: (Frage) beantwortet Status 
Datum: 21:48 Do 24.06.2010
Autor: kegel53

Aufgabe
Sei [mm] \alpha>0. [/mm] Desweiteren seien X und Y unabhängig und jeweils exponentialverteilt mit Parameter [mm] \alpha. [/mm]
Bestimmen Sie eine Wahrscheinlichkeitsdichte von X+Y.

Tag Leute,
also die Wahrscheinlichkeitsdichte von X+Y wurde bei uns definiert als die Faltung der beiden Dichten [mm] f_X [/mm] und [mm] g_Y, [/mm] wobei  [mm] f_X [/mm] die Dichte von X und [mm] g_Y [/mm] die Dichte von Y ist, d.h. es gilt:

[mm] (f\ast{g})(u):=\integral_{\IR} f(u-y)g(y)dy=\integral_{\IR_{>0}} \alpha\cdot{}e^{-\alpha(u-y)}\cdot{}\alpha\cdot{}e^{-\alpha\cdot{y}}dy=\integral_{\IR_{>0}} \alpha^2e^{-\alpha\cdot{u}}dy=?? [/mm]

Das würde ja heißen es gibt hier gar keine Dichte für X+Y, weil das Integral [mm] \infty [/mm] ist oder wie muss ich das verstehn? Oder hab ich irgendwo Mist hingeschrieben??

Vielen Dank schon mal!

        
Bezug
W'dichte von X+Y bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:24 Do 24.06.2010
Autor: steppenhahn

Hallo,

> Sei [mm]\alpha>0.[/mm] Desweiteren seien X und Y unabhängig und
> jeweils exponentialverteilt mit Parameter [mm]\alpha.[/mm]
>  Bestimmen Sie eine Wahrscheinlichkeitsdichte von X+Y.
>  Tag Leute,
>  also die Wahrscheinlichkeitsdichte von X+Y wurde bei uns
> definiert als die Faltung der beiden Dichten [mm]f_X[/mm] und [mm]g_Y,[/mm]
> wobei  [mm]f_X[/mm] die Dichte von X und [mm]g_Y[/mm] die Dichte von Y ist,
> d.h. es gilt:
>  
> [mm](f\ast{g})(u):=\integral_{\red{-\infty < y < u}} f(u-y)g(y)dy=\integral_{\red{0 < y < u}} \alpha\cdot{}e^{-\alpha(u-y)}\cdot{}\alpha\cdot{}e^{-\alpha\cdot{y}}dy=\integral_{0 < y < u} \alpha^2e^{-\alpha\cdot{u}}dy=??[/mm]

Achte darauf, dass auch die Integrationsgrenzen bei der Faltung nicht beliebig sind! (Siehe rot markiertes).
Du kannst beliebig viele unabhängige exponentialverteilte Größen falten und erhältst dann die so genannte Erlang-Verteilung.

Grüße,
Stefan

Bezug
                
Bezug
W'dichte von X+Y bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:43 Do 24.06.2010
Autor: kegel53

Alles klar, danke für den Hinweis!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]