www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Vorkurs Aufgabe 1)a
Vorkurs Aufgabe 1)a < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vorkurs Aufgabe 1)a: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:24 Fr 10.04.2009
Autor: DrNetwork

Aufgabe
Gegeben sei die Funktion f durch $ f(x) = [mm] \bruch{x^4 - 17 x^2 + 16}{3 x^2} [/mm] $

1. Bestimmen Sie den maximalen Definitionsbereich, das Symmetrieverhalten, Nullstellen (mit Steigung in den Nullstellen) und Extrempunkte sowie die Näherungsfunktion a(x) für betragsmäßig große x.
Zeichnen Sie die Graphen von f und a in dasselbe Koordinatensystem über dem Intervall [-5;5].
Die 2. Ableitung der Funktion lautet: $ f''(x) = [mm] \bruch{2(x^4 + 48)}{3 x^4} [/mm] $    

https://matheraum.de/vorkurszettel?id=91

Was muss man bei der Näherungsfunktion a(x) für betragsmäßig große x machen?

        
Bezug
Vorkurs Aufgabe 1)a: Antwort
Status: (Antwort) fertig Status 
Datum: 16:41 Fr 10.04.2009
Autor: weduwe


> Gegeben sei die Funktion f durch [mm]f(x) = \bruch{x^4 - 17 x^2 + 16}{3 x^2}[/mm]
>  
> 1. Bestimmen Sie den maximalen Definitionsbereich, das
> Symmetrieverhalten, Nullstellen (mit Steigung in den
> Nullstellen) und Extrempunkte sowie die Näherungsfunktion
> a(x) für betragsmäßig große x.
>  Zeichnen Sie die Graphen von f und a in dasselbe
> Koordinatensystem über dem Intervall [-5;5].
>  Die 2. Ableitung der Funktion lautet: [mm]f''(x) = \bruch{2(x^4 + 48)}{3 x^4}[/mm]
>  
> https://matheraum.de/vorkurszettel?id=91
>  
> Was muss man bei der Näherungsfunktion a(x) für
> betragsmäßig große x machen?


für [mm] x\to \infty: f(x)\approx \frac{x^2}{3} [/mm]
wie man nach division durch den nenner vermuten darf :-)

Bezug
                
Bezug
Vorkurs Aufgabe 1)a: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:49 Fr 10.04.2009
Autor: DrNetwork

Nach der Polynomendivision hab ich heraus:

[mm] \frac{1}{3}x^2-\frac{17}{3}+\frac{16}{3x^2} [/mm]

ist das nun die Näherungsfunktion oder soll ich da was weglassen?

Bezug
                        
Bezug
Vorkurs Aufgabe 1)a: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 Fr 10.04.2009
Autor: M.Rex

Hallo

> Nach der Polynomendivision hab ich heraus:
>  
> [mm]\frac{1}{3}x^2-\frac{17}{3}+\frac{16}{3x^2}[/mm]
>  
> ist das nun die Näherungsfunktion oder soll ich da was
> weglassen?


Jetzt lasse mal [mm] x\to\infty [/mm] laufen, dann hast du die Asymptote (Was ja die Näherungsfunktion ist)

Marius

Bezug
                        
Bezug
Vorkurs Aufgabe 1)a: Näherungsfunktion
Status: (Antwort) fertig Status 
Datum: 17:23 Fr 10.04.2009
Autor: Loddar

Hallo DrNetwork!


Die Näherungsfunktion erhält man, indem man den gebrochen-rationalen Term weglässt.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]